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Abstract. State-of-the-art machine translation (MT) systems rely on
the availability of large parallel corpora, containing millions of sentence
pairs. For the Icelandic language, the parallel corpus ParIce exists, con-
sisting of about 3.6 million English-Icelandic sentence pairs. Given that
parallel corpora for low-resource languages typically contain sentence
pairs in the tens or hundreds of thousands, we classify Icelandic as a
medium-resource language for MT purposes. In this paper, we present
on-going experiments with different MT models, both statistical and neu-
ral, for translating English to Icelandic based on ParIce. We describe the
corpus and the filtering process used for removing noisy segments, the
different models used for training, and the preliminary automatic and
human evaluation. We find that, while using an aggressive filtering ap-
proach, the most recent neural MT system (Transformer) performs best,
obtaining the highest BLEU score and the highest fluency and adequacy
scores from human evaluation for in-domain translation. Our work could
be beneficial to other languages for which a similar amount of parallel
data is available.
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1 Introduction

Most work in Machine Translation (MT) through the years has mainly either
focused on high-resource or low-resource language pairs. Usually, a language
pair is considered high-resource if a parallel corpus exists consisting of millions
of sentence pairs. In contrast, a language pair is considered low-resource if either
no parallel corpus exists, or the corpus only consists of a few tens or hundreds
of thousands of sentence pairs.

Neural Machine Translation (NMT), in particular sequence-to-sequence mod-
els based on attention mechanisms, e.g. the Transformer [22], has in recent years
? Equal contribution.
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become the dominant paradigm in high-resource settings, replacing the previ-
ously long-standing dominance of Statistical Machine Translation (SMT) [10].

One parallel corpus, ParIce [2], containing about 3.6 million English-Icelandic
(en-is) sentence pairs, currently exists for Icelandic. Given the size of ParIce,
and the fact that we have only been able to use about 1.6 million of its sentence
pairs for training (see Section 3.2), we currently categorize the en-is pair as a
medium-resource language pair.

In this paper, we present on-going work of experimenting with different MT
systems, both based on SMT and NMT, for translating in the en→is direction.
We describe the ParIce corpus and the filtering process used for removing noisy
segments, the different models used for training, and the preliminary evaluation
– both with regard to BLEU scores and human evaluation. We find that, while
using an aggressive filtering approach, the most recent NMT system, based on
the Transformer, performs best in our setting, obtaining a BLEU score of 54.71
(6.11 points higher than the next best performing system, Moses). Furthermore,
the Transformer system also obtained the highest fluency and adequacy scores
from human evaluation, in the in-domain setting. Our work could be beneficial
to other languages for which a similar amount of parallel data is available.

2 Related Work

In the last few years, research has shown that the NMT approach has significantly
pushed ahead the state-of-the-art in MT, which before belonged to phrase-based
SMT (PBSMT) systems. For example, [3] compared and analysed the output of
three PBSMT systems and one NMT system for English→German and found,
inter alia, that i) the overall post-edit effort needed on the output from the NMT
system is considerably lower compared to the best PBSMT system; ii) that the
NMT system outperforms the PBSMT on all sentence lengths; and iii) that the
NMT output contains less morphological errors, less lexical errors and less word
order errors.

Even though NMT has emerged as the dominant MT approach, there have
also been reports of poor performance when using NMT under low-resource
conditions. Compared to SMT, [11] found that NMT systems have lower qual-
ity on out-of-domain texts, sacrificing adequacy (how much of the meaning is
transferred between the source and the generated target) for the sake of flu-
ency (a rating of how fluent the generated target language is). They also found
that the NMT systems performed worse in low-resource settings, but better in
high-resource settings.

[5] discuss the quality of NMT vs. SMT. They argue that “so far it would
appear that NMT has not fully reached the quality of SMT”, based on automatic
and human evaluations for three use cases, and that the results depend on the
different domains and on the various language pairs.

In a study, using the medium-resource language pair English-Polish, [8] found
that an SMT model achieves a slightly better BLEU score than an NMT model
based on an attention mechanism. On the other hand, human evaluation carried
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out on a sizeable sample of translations (2,000 pairs) revealed the superiority of
the NMT approach, particularly in the aspect of output fluency.

Given the mixed findings in the literature regarding comparison between
NMT and PBSMT, especially in low or medium-resource settings, we decided to
include SMT in our experiments.

The only previously published MT results regarding Icelandic are [4] and
[9], although Icelandic has been included in massively multilingual settings [6].
The results rely either on rule-based systems or variants of transfer learning.
In contrast, our work constitutes the first published MT and NMT results for
Icelandic based on direct supervised learning.

3 Corpus and Filtering

In this section, we describe the ParIce corpus and explain which parts of it are
used for training/testing as well as the filtering process for removing segments
not suited for training.

3.1 ParIce

For training, we used ParIce [2], an en-is parallel corpus consisting of roughly
3.6 million translation segments. The corpus data is aligned with hunalign [21]
and filtered using a sentence scoring algorithm based on a bilingual lexicon bag-
of-words method and a comparison between an MT generated translation of a
segment and the original segment.

ParIce is a collection of data from different sources, the largest being a collec-
tion of EEA regulatory texts (48%), data from OpenSubtitles (37%), published
on OPUS [20] but refiltered in the ParIce corpus, and translation segments from
the European Medicines Agency (EMA; 11%) published in the Tilde MODEL
corpus [17] (other sources amount to 4% of the data). From each of these three
corpora, we sampled roughly 2000 segments to serve as test sets.

3.2 Filtering

Starting from the 3.6 million segments compiled in ParIce, we filtered the corpus
before training any models. Among the filters we used, many were adapted from
the suggestions of [15]. Most of the filters are proxies for alignment errors, OCR
errors, encoding errors and general text quality.

Primarily, the filters and post-editing consist of: 1) empty sentence filter;
2) identical or approximately identical source and target sequence, measured
by absolute and relative edit distance; 3) sentence length ratio filter, in charac-
ters and tokens; 4) maximum and minimum sequence length filter, in characters
and tokens; 5) maximum token length; 6) minimum average token length; 7)
character whitelist; 8) digit mismatch: both sides should have the same set of
number sequences; 9) unique sequence pair, after removing whitespace, punctu-
ation, capitalization and normalizing all numbers to 0 (all number sequences are
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equivalent); 10) case mismatches where one side is all uppercase and the other
not; 11) corrupt symbols, e.g. weird punctuation like ? and " inside words; 12)
many other ad-hoc regular expressions for Icelandic and dataset specific OCR
artifacts and encoding errors (e.g. common words where b replaces þ, i replaces
l, missing accents); 13) normalizing of quotes, bullets, hyphens and other punc-
tuation; 14) fixing line splits where a word was split due to text reflow.

When applicable, we use the numbers provided in [15]. Otherwise the fil-
ters were tuned to fit Icelandic and ParIce specifically. Roughly half of ParIce
was filtered out with this approach, leaving 1.6 million translation segments for
training, consisting of around 29 million Icelandic tokens and 32 million English
tokens.

4 Models

In this section, we describe the key characteristics of PBSMT and NMT models
and the three different systems/models we have experimented with: the SMT
system Moses, and two NMT models, the first one based on BiLSTM and the
second one on the Transformer. Each model attempts to estimate the probability
p(t|s), the probability of a sentence t in the target language given a sentence s
in the source language.

4.1 PBSMT

In PBSMT, p(t|s) is not modelled explicitly, rather Bayes’ theorem is applied
and t is reached via a translation model p(s|t) and a language model p(t) by
estimating argmaxt p(s|t)p(t). Furthermore, s and t are segmented into smaller
phrases, upon which the translation model is defined. The phrases are extracted
and their probabilities estimated during training using the underlying parallel
corpus. The language model ensures the fluidity of t and can be derived from
the training data and/or from a separate monolingual corpus. For further details
see [10].

Moses We used the standard open source implementation of PBSMT, the Moses
system3. We created a number of different Moses models in order to deal with
the morphological richness of Icelandic. For example, we used a large out-of-
domain monolingual corpus and tokenizers including subword tokenizers such
as SentencePiece [13] with Byte Pair Encoding (BPE) and Unigram for both is
and en, with a 30k vocabulary for each language. For all models we used the
default alignment heuristic, the default distortion model, and a 5-gram KenLM
[7] language model trained on additional monolingual data, i.e. 6.5 million sen-
tences from the Icelandic Gigaword Corpus [18]. The best performing model,
which uses the Moses tokenizer for both en and is, is evaluated against the
NMT based systems in Section 5.
3 http://www.statmt.org/moses/
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4.2 NMT

An NMT system attempts to model p(t|s) directly using a large modular neural
network that reads s and outputs t, token by token. Instead of representing
the tokens symbolically, like PBSMT systems, the tokens are represented using
vectors (embeddings). The typical NMT system is based on sequence-to-sequence
learning, and consists of two components: an encoder and a decoder. The system
is trained to maximize p(t|s) by updating the parameters of the network using
stochastic gradient descent to back-propagate the errors from the output layer
to the previous layers. The two dominant NMT architectures over the last few
years are based on 1) LSTM, and 2) self-attention networks (Transformer).

BiLSTM The general LSTM model for NMT is described in [19]. In this model,
the encoder is an LSTM that converts an input sequence s to a fixed-sized vector
v from which the decoder, another LSTM, generates t. Given the embedded
tokens of s, (x1, . . . , xT ) and v, the model estimates the conditional probability
p(y1, . . . , yT ′ |x1, . . . , xT ) as follows:

p(y1, . . . , yT ′ |x1, . . . , xT ) =

T
′∏

t=1

p(yt|v, y1, . . . , yt−1) (1)

where (y1, . . . , yT ′ ) represents the target sentence t, and where T
′
may be dif-

ferent from T . In other words, the prediction of each target token depends on
the encoded version of the whole input sequence, as well as on the previously
predicted target words.

The model is further improved by adding an additional LSTM to the encoder
which reads the input in the reverse order, i.e. the encoder is bidirectional.
Additionally, during decoding, these networks can be augmented with attention
[1, 14] where alignments between target and source tokens can be modeled more
explicitly. We used the standard BiLSTM implementation from OpenNMT4,
medium and large NMT models with Luong attention [14] (4-layer 256 hidden
unit encoder, 4 layer 512 hidden unit decoder; large model has 6 layers and
double the number of hidden units). We used a 16k joint BPE vocabulary.

Transformer The Transformer, proposed by [22], builds on previous models in
various ways. Its design provides for much better parallelization, and it leverages
GPU architecture more so than LSTMs. In general, it achieves better machine
translation performance for the same training time and data as compared to
LSTMs.

The Transformer consists of stacked transformer blocks, each of which com-
prises 2–3 sublayers, self-attention, decoder-to-encoder attention, and a fully
connected layer. The block operates independently over a sequence of hidden
vectors hi whereby each vector in the sequence can attend to (i.e. receive infor-
mation from) all other hidden vectors in the sequence before being transformed
4 https://opennmt.net/



6 H.P. Jónsson et al.

by the fully connected sublayer. The decoder block has an added attention sub-
layer that allows it to attend to the encoder in addition to itself. Finally, the last
decoder block has a softmax output layer for token probabilties.

The implementation we use is the reference implementation from [22] of the
transformer-base architecture which is part of the Tensor2Tensor package5. It
has 6 layers each for its encoder and decoder with attention head count of 8.
We used shared source and target embeddings. The included subword tokenizer
provided by Tensor2Tensor was used to build a 16k joint subword vocabulary.

5 Evaluation

In this section, we present the results of automatic and human evaluation of
the individual models, Moses, BiLSTM and Transformer, for translating in the
en→is direction.

Neither NMT model was fine-tuned before evaluation, and the Transformer
used checkpoint-averaging (a gain of about 0.5 BLEU). The batch sizes for the
Transformer and the BiLSTM were 1700 (subword) tokens and 32 sequences, re-
spectively. No other hyperparameter tuning was performed due to computational
restraints.

5.1 BLEU scores

We use BLEU for automatic evaluation. It is the most widely used MT quality
metric and it has reasonably high correlation with human evaluations. Due to
possible biases that may be “unfair” to some technologies [16], the BLEU scores
cannot be the primary evidence of the quality of our systems. Therefore, we also
rely on human evaluation.

As discussed in Section 3.1, the test sets consists of about 2000 segments
sampled from three parts of the ParIce corpus: EEA, EMA, and OpenSubtitles.
Table 1 shows the results for the three system and the different test sets, as well
as the combined sets.

Table 1. BLEU scores for the three systems and the different test sets.

Model EES EMA OpenSubtitles Combined

BiLSTM 38.68 41.60 23.32 38.12
Moses 49.70 54.93 26.11 48.60
Transformer 56.31 58.37 34.71 54.71

In [22] it was shown that the Transformer is the dominant model in high-
resource settings. Our results indicate that the Transformer also performs best
in medium-resource settings. It is, however, noteworthy that the Moses systems
performs significantly better than the BiLSTM model.
5 https://github.com/tensorflow/tensor2tensor
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5.2 Human Evaluation

We recruited three people with translation experience for adequacy evaluation
and three Icelandic linguists for fluency evaluation. We randomly chose 100 sen-
tences from our test set for in-domain evaluation, and 100 sentences from news
for out-of-domain evaluation. The sentence lengths varied substantially, averag-
ing 18.2 words per sentence, with a standard deviation of 13.7. Each sentence
was translated by our three systems as well as by Google Translate, for reference.
We used Keops6 for the evaluation.

The fluency group was given the following instructions: Is the sentence good
fluent Icelandic? Rate the sentence on the following scale from 1 to 5. 1 – incom-
prehensible; 2 – disfluent Icelandic; 3 – non-native Icelandic; 4 – good Icelandic;
5 – flawless Icelandic. The adequacy group was given the following instructions:
Does the output convey the same meaning as the input sentence? Rate the sen-
tence on the following scale from 1 to 5. 1 – none; 2 – little meaning; 3 – much
meaning; 4 – most meaning; 5 – all meaning.

We calculated the Intraclass Correlation Coefficient (ICC) for both groups.
This resulted in ICC of 0.749, with 95% confidence interval (CI) in the range
0.718–0.777 for the fluency group, and ICC of 0.734 and 95% CI in the range
0.705–0.760 for the adequacy group. According to [12], this suggests that inter-
rater agreement is moderate to good for both groups.

Table 2. Fluency and adequacy scores from human evaluation.

Test Set Model Fluency Adequacy

In-domain

BiLSTM 2.49 2.01
Moses 3.64 3.84
Transformer 4.30 4.33
Google 3.80 4.16

Out-of-domain

BiLSTM 1.85 1.30
Moses 2.54 2.32
Transformer 3.20 2.86
Google 3.40 3.80

We calculated adequacy and fluency on our original scale resulting in the val-
ues shown in Table 2. The results show that the Transformer is perceived to give
more adequate and more fluent translations than our other two systems, both
for out-of-domain translations and in-domain, where it even outperforms Google
Translate, although that may of course be because our in-domain translations
are not in Google Translate’s domain. Our SMT system performs decently, not
as good as the Transformer or Google Translate, but outperforms the BiLSTM
system by far.

6 https://github.com/paracrawl/keops
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6 Conclusion

We have described experiments in using three different architectures (Moses,
BiLSTM and Transformer) for translating in the en→is direction. Automatic
and human evaluation shows that the Transformer architecture performs best,
followed by Moses and BiLSTM (in that order).

In future work, we intend to experiment with larger model sizes, backtrans-
lation, and bilingual language model pre-training. Explicit handling of named
entities is also a problematic issue, as the available parallel data contains very
few Icelandic names.
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