
What is Theoretical Computer Science?
(Preliminary Version)

Luca Aceto∗ † Anna Ingolfsdottir∗‡

Abstract

This article presents a bird’s eye view of Theoretical Computer Science
aimed at a general scientific audience. It then focuses on a selected area
within this general field, and discusses some of the applications of results
from that area and of the fundamental theoretical questions that drive its de-
velopment.

1 Introduction and Overview

Even for many scientifically cultured people, the mention of the expression “The-
oretical Computer Science” (henceforth abbreviated to TCS) sounds like a contra-
diction in terms. Indeed, there seems to be little that is as practical as, and less
theoretical than, Computer Science.

We all have some level of familiarity with computers, and our daily experience
shows us how these machines have dramatically changed, and most likely will
continue changing, many aspects of our lives. Moreover, embedded computing
devices permeate our world to a degree that is sometimes not appreciated by the
layman, since these systems and the software that increasingly provides their core
functionalities are, as the name suggests, embedded in physical devices, and are
therefore invisible to their users.

Computer Science artifacts are thus the heralds of a pervasive technology, and
computing is perceived precisely as atechnology that is responsible for ground-
breaking advances in the way we handle information and interact with one another.
This is all very well and is a great advertisement for our subject. However, these

∗BRICS, Department of Computer Science, Aalborg University, 9220 Aalborg Ø, Denmark.
Email: luca@cs.aau.dk (Luca Aceto) andannai@cs.aau.dk (Anna Ingolfsdottir).

†School of Computer Science,Reykjav́ık University, Iceland. Email:luca@ru.is .
‡Department of Computer Science, University of Iceland, Iceland. Email:annaing@hi.is

(Anna Ingolfsdottir).

1

http://www.cs.auc.dk/~luca/
http://www.cs.auc.dk/~annai/
http://www.brics.dk
http://www.cs.auc.dk/
http://www.auc.dk/
luca@cs.aau.dk
annai@cs.aau.dk
http://www.ru.is/
luca@ru.is
annaing@hi.is


technological advances and the information technology revolution are hiding from
the general educated public the role that thescientific foundations of Computer
Science have played in making them possible. Moreover, it is one of our tenets
that, like astronomy, biology, mathematics, physics and the other time-honoured
areas of scientific endeavour, thescience of computing has some basic founda-
tional questions that are worth investigating in their own right, regardless of their
potential technological impact. One of the great mysteries of basic science is that
answers to these fundamental questions often turn out to have huge practical im-
pact in the most unforeseen situations. As we shall see in this essay, TCS is no
exception.

But, what is TCS, you may ask? As stated by Oded Goldreich and Avi Wigder-
son in their eloquent essay [16], TCS is the fundamental scientific discipline that
aims at “understanding general properties of computing, be it natural, man-made,
or imaginary.” Most likely, you are using man-made computing devices daily—be
they computers, PDAs, game consoles etc. However, it is becoming increasingly
clear that Nature itself computes, and it is not uncommon these days to see, e.g.,
theoretical physicists discuss the information content of black holes or of the uni-
verse itself (see, e.g., [5]) or the feasibility and power of quantum computation or
other computing principles from the physical world (see, e.g., [1, 40, 42]). More-
over, researchers in the developing subject of system biology use computational
methods to understand the behaviour of living matter, and even a commercial soft-
ware giant like Microsoft is contributing to these investigations [15]. As for imagi-
nary computing devices, one should look no further than Alan Turing’s analysis of
the notion of algorithmic computation that led to the development of the so-called
Turing machines and ultimately to the universal computer as we know it. (See
Martin Davis’ book [10] for a highly readable and riveting account of the historical
development of the ideas that led to the universal computer, stressing the role that
logic and logicians have played in it.)

In all of the aforementioned cases, a general pattern of scientific investigation
that underlies all of the research in TCS emerges clearly. Research in TCS often
starts from the desire to understand the properties of some notion of computation.
In particular, we are interested in characterizing what algorithmic problems can be
solved, in theory or in practice, using the chosen notion of computation. Anal-
gorithmic problem is described by specifying its collection of legal inputs, and its
expected outputs as a function of the legal inputs. (In the main body of this essay,
we shall see, however, that a large part of computation cannot be readily under-
stood as producing outputs from inputs. See Section2 to follow.) Having identified
the type of computation to be studied, researchers in TCS abstract its essence in
a mathematical model of computation that suppresses the low-level details of the
object or artifact being studied, but still captures its essential features. This ab-

2



straction step is common to all forms of theoretical scientific investigation, and, as
argued by Christos Padimitriou in his essay [30], is, in fact,inevitable in Computer
Science because the high-level behaviour of the computer is its only aspect that
we can hope to observe directly. Examples of classic models of computation that
have had a long-lasting impact on the theory and practice of Computer Science are
Turing machines, automata on finite and infinite words, (labelled) transition sys-
tems, parallel random access machines, rewriting systems and the lambda-calculus
to mention but a few. (See, e.g., [3, 25, 34, 35, 36] for information on these models
of computation.)

Having identified a suitable abstract model for the computational phenomena
under investigation, researchers in TCS will then use it to answer questions re-
lated to its computational power and its limitations. Possibly the earliest and most
classic example of the effectiveness of this approach was given byTuring’s nega-
tive solution toHilbert’s Entscheidungsproblem [38]. In the process of obtaining
this groundbreaking result, Turing showed that the so-called HALTING PROBLEM,
namely the problem of determining whether the computation of an input Turing
machineM terminates on some input datumd, is algorithmically unsolvable. This
celebrated theorem of Turing’s was one of the first of a plethora of negative re-
sults that sharply define the power of the algorithmic method, and are one of the
cornerstones of TCS. (See, e.g., David Harel’s book [20] for a beautiful and very
accessible exposition of results from the theory of computation pertaining to the
inherent limitations of algorithmic problem solving.) Indeed, as argued by Pa-
padimitriou in [30], together with its forefather Mathematical Logic, TCS is pretty
much unique in its development of mathematical techniques for proving negative
results, and we believe that this is one of the main intellectual achievements of our
field.

Further examples of some of the most basic questions that researchers in TCS
tackle in their work are:

• What is the nature of efficient computation? Does the notion of efficient
computation depend on the model of computation?

• How many computational resources (e.g., time and/or space) does it take
solve a specific algorithmic problem?

• Is it possible to exchange information so that eavesdroppers cannot access
it?

• What are appropriate models of computation that are sufficiently expressive,
and yet amenable to algorithmic analysis?

3

http://www.turing.org.uk/turing/
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Hilbert.html


• When is a computing system correct? Is it possible to establish mathemati-
cally that a system does what it is supposed to?

This is a just a small, but hopefully representative, sample of the key questions
that drive the developments in TCS. A more extensive overview of the many sub-
fields of investigation that belong to TCS at large can be gleaned by looking at
the contents of the highly influential two-volumeHandbook of Theoretical Com-
puter Science [26]. Volume A of that opus is devoted to areas of investigation that
roughly belong to the general theme ofAlgorithms and Complexity. Examples are
computational complexity classes like P and NP, Kolmogorov complexity, algo-
rithms on graphs and strings, data structures, parallel algorithms and architectures,
and cryptography. At the risk of over-generalizing, it seems fair to say that the flag-
ship question in the “Volume A camp” of TCS, and possibly for TCS as a whole,
is whether P equals NP, i.e., whether, as real-life experience seems to suggest, it
is easier to verify the correctness of a purported solution to an algorithmic prob-
lem than to find the solution itself. At least, this is certainly the Computer Science
problem that has the widest exposure in the scientific literature at large—see, e.g.,
[23]—, and, as argued by Stephen Cook in [9], the practical consequences of a
positive solution to it would be stunning.

Volume B of the handbook is instead devoted to the general theme ofFor-
mal Models and Semantics. Sample topics that belong to this theme are models
of computation like automata on finite and infinite strings, rewriting systems and
the lambda-calculus, formal languages, type systems for programming languages,
database theory, logic in Computer Science and models of concurrent and dis-
tributed computing. The emphasis here is on languages and models for describing
computational phenomena and their semantics, with logic playing an extremely
important unifying role in many of the investigations. (See, e.g., the excellent sur-
vey [18] for a discussion of the usefulness of logic in Computer Science.)

Since the publication of [26], areas likeComputational Learning Theory [24]
have become more and more important, and there has been a resurgence of interest
in classic fields like coding and information theory that lie at the boundary between
(discrete) mathematics and TCS. (See, e.g., [37] for a survey of the connections be-
tween coding theory and computational complexity.) Another key development has
been the realization of the importance and of the power ofrandomness in compu-
tation. This has revolutionized the theory of algorithms, and TCS researchers have
shown that, in many cases, probabilistic algorithms and protocols can achieve goals
which are impossible deterministically. In other cases, randomized algorithms en-
able much more efficient solutions than deterministic ones. (See, e.g., [28] for a
textbook presentation of the field of randomized algorithms.)

Particularly pleasing for TCS buffs has also been the increasing number of

4



applications of models and ideas from the theory of computation to other sciences.
Indeed, the ideas of TCS have been, and are being, exported to fields as disparate as
statistical physics, economics, biology and quantum physics. As a single example,
let us mention the way in which models and ideas from TCS have been used by
Leslie Valiant in his book [39] to propose a neuroidal model of some brain activities
like memorization and learning that seems to explain how our minds go about
achieving some of their basic tasks, and whose predictions are being confirmed by
the neurosciences.

Our goal in the remainder of this article is to focus the above general discussion
by presenting a selected sub-field within TCS, some of the applications of results
from that field and some of the fundamental theoretical questions that drive its
development. In particular, we shall offer a bird’s eye view of some aspects of
concurrency theory—the branch of TCS that deals with the development of models
and specification languages that can be used to describe, and reason about, systems
consisting of a collection of interacting processes. We state at the outset that this
is a biased choice of sample topic for an introductory essay on TCS, and cannot be
considered canonical in any way. It is just a reflection of some of our own research
interests, and gives us the opportunity to discuss how beautiful theory developed
within the TCS community can and does have practical impact.

We hope that this piece will entice our readers to explore TCS as a fascinating
area of scientific endeavour. The effort we have put in writing it will be amply
re-payed if our readers will think of computing not just as an amazing technology,
but also as a worthwhile scientific endeavour on a par with the classic sciences.

2 Concurrency Theory

As mentioned in the previous section, the “standard” view of computing systems
is that, at a high level of abstraction, these may be considered as black boxes that
take inputs and provide appropriate outputs. This view agrees with the description
of algorithmic problems. Recall that analgorithmic problem is specified by giving
its collection of legal inputs, and, for each legal input, its expected output. An
abstract view of a computing system may therefore be given by describing how it
transforms an initial input to a final output.

In this view of computing systems, non-termination is a highly undesirable
phenomenon. An algorithm that fails to terminate on some inputs is not one the
users of a computing system would expect to have to use. A moment of reflection,
however, should make us realize that we already use many computing systems
whose behaviour cannot be readily described as a transformation from inputs to
outputs—not least because, at some level of abstraction, these systems are inher-

5



ently meant to be non-terminating. Examples of such computing systems are:

• operating systems,

• communication protocols,

• control programs and

• software running in embedded system devices like mobile telephones.

At a high level of abstraction, the behaviour of a control program can be seen to be
governed by the following pseudo-code algorithm skeleton

loop
read the sensors’ values at regular intervals
depending on the sensors’ values trigger the relevant actuators

forever

The aforementioned examples, and many others, are examples of computing sys-
tems that interact with their environment by exchanging information with it. Like
the neurons in a human brain, these systems react to stimuli from their computing
environment (in the example control program above these are variations in the val-
ues of the sensors) by possibly changing their state or mode of computation, and
in turn influence their environment by sending back some signals to it, or initiating
some operations whose effect it is to affect the computing environment (this is the
role played by the actuators in the example control program). David Harel and
Amir Pnueli coined the termreactive system in [19] to describe a system that, like
the aforementioned ones, computes by reacting to stimuli from its environment.

As the above examples and discussion indicate, reactive systems are inherently
parallel systems, and a key role in their behaviour is played by communication and
interaction with their computing environment. A “standard” computing system can
also be viewed as a reactive system in which interaction with the environment only
takes place at the beginning of the computation (when inputs are fed to the com-
puting device) and at the end (when the output is received). On the other hand,
all the example systems given before maintain a continuous interaction with their
environment, and we may think of both the computing system and its environment
as parallel processes that communicate one with the other. (A process is “some-
thing going on; a series of actions or operations conducing to an end” [29].) In
addition, unlike with “standard” computing systems, as again nicely exemplified
by the skeleton of a control program given above, non-termination is adesirable
feature of some reactive systems. We certainly donot expect the operating systems
running on our computers or the control program monitoring a nuclear reactor to
terminate!

6



Concurrency theory is the branch of TCS whose aim is to develop a general
purpose theory that can be used to describe, and reason about,any collection of
interacting processes. The theory of concurrency offers

• mathematical models for the description of the behaviour of collections of
interacting processes that may compute independently and/or communicate
with one another and

• formal languages for expressing their intended behaviour.

These ingredients give the foundations for the development of (semi-)automatic
verification tools for reactive systems that support various formal methods for val-
idation and verification that can be applied to the analysis of highly non-trivial
computing systems. The development of these tools requires in turn advances in
algorithmics, and via the increasing complexity of the analyzed designs feeds back
to the theory development phase by suggesting the invention of new languages and
models for the description of reactive systems.

As recent advances in algorithmic verification and applications of model check-
ing [7] have shown, the tools and ideas of concurrency theory can be used to ana-
lyze designs of considerable complexity that, until a few years ago, were thought to
be intractable using formal analysis and modelling tools. (Indeed, companies such
as AT&T, Cadence, Fujitsu, HP, IBM, Intel, Motorola, NEC, Siemens and Sun are
using these tools increasingly on their own designs to reduce time to market and
ensure product quality.) A discussion of the details of these non-trivial applications
of concurrency theory is beyond the scope of this survey. However, we should like
to mention the general principles underlying modelling and verification of reactive
systems, and to give a few, undoubtedly biased, pointers to some of their most
interesting applications to date.

In Computer Science we build artifacts—implemented in hardware, software
or, as is the case in the fast-growing area of embedded and interactive systems, us-
ing a combination of both—that are supposed to offer some well defined services
to their users. Since these computing systems are deployed in very large numbers,
and often control crucial, if not safety critical, industrial processes, it is vital that
they correctly implement the specification of their intended behaviour. The prob-
lem of ascertaining whether a computing system does indeed offer the behaviour
described by its specification is called thecorrectness problem, and is one of the
most fundamental problems in Computer Science. The field of Computer Science
that studies languages for the description of (models of) computer systems and their
specifications, and (possibly automated) methods for establishing the correctness
of systems with respect to their specifications is calledalgorithmic verification.

7



In algorithmic verification one abstracts the significant details of the design
to be analyzed using a mathematical model. Typical models used in concurrency
theory are based on variations on the classic notion of automaton. Anautomaton
describes a system by listing its collection of possiblestates of computation—
abstract representations of the relevant effect that the computation carried out so
far has had on the system—together with the way that states change as the system
performs basic computational actions.

In one approach to the correctness problem, automata are used not only to
describe actual systems, but also their intended behaviour. An automaton IMP
correctly implements the behaviour described by another automaton SPEC if the
two automata describe essentially the same behaviour, but at different levels of
abstraction or refinement. In this approach, the correctness problem is formalized
by the mathematical problem of checking whether two automata are, in some well
defined sense, “equivalent” or whether one is “a suitable approximation” of the
other. Efficient algorithms and proof methodologies are often available to settle
this question with the help of computer support. For instance, this approach has
been used in [14] by Wan Fokkink, Jan Friso Groote and their research groups to
analyze a well known sliding window protocol.

Another, very successful approach to the aforementioned correctness problem
is model checking. In this approach, a computing system is again modelled as a
collection of interacting automata—describing the states of the system’s compo-
nents and the effect that computation steps have on them—, whereas (un)desired
properties of the system are expressed using some form of logic [11, 31]. Typical
logics that are used to describe properties of systems allow one to express con-
straints like

“It is always the case that each sent message is eventually delivered,”

or

“The lift system never ends up in a state where it cannot perform any action.”

Given a collection of interacting automata and a logical formula, the model check-
ing problem asks whether the system described by the automata is a model of the
formula—that is, whether the system affords the property described formally by
the logical formula. Moreover, if the answer to this question is negative, it is useful
for debugging purposes to generate some diagnostic information expressing why
the system doesnot enjoy the desired property.

Regardless of the logic one uses to describe correctness criteria for systems
modelled as interacting automata, the key to the popularity and wide applicabil-
ity of model checking is that algorithms for model checking are now implemented

8



in efficient, fully automatic verification tools that can be used to check the cor-
rectness of very complex designs. Tools like COSPAN [13], nuSMV (seehttp:
//nusmv.irst.itc.it/ )—a reimplementation and extension of SMV [27],
the first model checker based on Binary Decision Diagrams [6]—, SPIN [22] (see
http://spinroot.com/spin/whatispin.html ) and UPPAAL [4] (see
http://www.uppaal.com/ ) are examples of industrial strength model check-
ers.

A paradigmatic example that highlights the usefulness of model checking in
discovering errors in system designs that are due to rarely occurring, or very com-
plex, interactions is the analysis of a Bang & Olufsen audio/video protocol carried
out in [21]. The protocol was developed by Bang & Olufsen to transmit mes-
sages between audio/video components over a single bus. Though it was known to
be faulty, the error was not found using conventional testing methods. Using the
model checker UPPAAL to analyze a model of the protocol, Havelund et al. were
able to synthesize automatically a sequence of interactions between the protocol
components that revealed the error. Based on this debugging information, they
were then able to suggest a modification of the original protocol design, and prove
it correct using UPPAAL.

Another example with a similar flavour is presented in [17]. There the authors
formally modelled and analyzed a complex distributed system for lifting trucks. As
a result of the formal analysis, four errors were found in the original design. Based
upon the knowledge obtained during analysis, the authors proposed solutions for
these problems and showed, by means of model checking, that the modified system
meets the requirements.

A different application of model checking techniques is presented in [41],
where the authors applied the file system model checking tool FiSC to three widely-
used, heavily-tested file systems, namely ext3, JFS, and ReiserFS. Possibly surpris-
ingly, the model checker found serious bugs in all of them. For each file system,
FiSC found demonstrable events leading to the unrecoverable destruction of entire
directories, including the file system root directory!

The latter example is paradigmatic of the current trend to use model checking
and other techniques originating from concurrency theory and algorithmic verifi-
cation to the analysis of systems other than communication protocols, which were
the first application area for results from those fields. We expect that such “ex-
troverted” applications will become increasingly prominent in the future. For in-
stance, as witnessed by the developments in [12, 32], model checking tools are
finding application in resource optimal scheduling and planning. Together with
other formal methods from, amongst others, concurrency theory, model checkers
are also currently employed by NASA to produce reliable software systems for use
in their deep-space missions [33].

9

http://nusmv.irst.itc.it/
http://nusmv.irst.itc.it/
http://spinroot.com/spin/whatispin.html
http://www.uppaal.com/


It is not our aim to offer a complete list of model checking tools and their
applications. However, we hope that the aforementioned examples of real-life sys-
tems that have been analyzed using them will spur our readers to explore their use,
and to appreciate their applicability in actual verification and validation tasks. The
interested reader will find an informative, albeit somewhat dated, discussion of
applications of formal methods in [8]. A gentle introduction to some of the math-
ematical models and logics used in concurrency theory may be found in the draft
textbook [2].

Acknowledgments The first author dedicates this essay to the memory of his
father, Trento Aceto (26 September 1915–14 April 2005), who passed away while
this piece was being finalized.

We thank Bj̈orn Thor Jonsson and Kari Ragnarsson for carefully reading a draft
of this article, and offering thoughtful suggestions that led to improvements in the
presentation. Any remaining infelicity is solely our responsibility.

References

[1] Scott Aaronson. NP-complete problems and physical reality.ACM SIGACT
News, 36(1):30–52, March 2005. Available fromhttp://www.arxiv.
org/abs/quant-ph/0502072 .

[2] Luca Aceto, Anna Ingolfsdottir, and Kim Guldstrand Larsen. An introduction
to Milner’s CCS, 2005. Draft textbook. Available fromhttp://www.cs.
aau.dk/˜luca/SV/intro2ccs.pdf .

[3] H. P. Barendregt.The Lambda Calculus: Its Syntax and Semantics, volume
103 ofStudies in Logic and the Foundations of Mathematics. North-Holland
Publishing Co., Amsterdam, revised edition, 1984.

[4] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial
on UPPAAL. In Marco Bernardo and Flavio Corradini, editors,SFM, volume
3185 ofLecture Notes in Computer Science, pages 200–236. Springer, 2004.

[5] Jacob D. Bekenstein. Information in the holographic universe.Scientific
American, 289(2):48–55, August 2003.

[6] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams.ACM Comput. Surv., 24(3):293–318, 1992.

[7] Ed Clarke, Orna Gruemberg, and Doron Peled.Model Checking. MIT Press,
December 1999.

10

http://www.arxiv.org/abs/quant-ph/0502072
http://www.arxiv.org/abs/quant-ph/0502072
http://www.cs.aau.dk/~luca/SV/intro2ccs.pdf
http://www.cs.aau.dk/~luca/SV/intro2ccs.pdf


[8] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the art
and future directions.ACM Comput. Surv., 28(4):626–643, 1996.

[9] Stephen Cook. The importance of the P versus NP question.Journal of the
ACM, 50(1):27–29, 2003.

[10] Martin Davis.Engines of Logic: Mathematicians and the Origin of the Com-
puter. W.W. Norton & Company Ltd, September 2001.

[11] E. Allen Emerson. Temporal and modal logic. InHandbook of theoretical
computer science, Vol. B, pages 995–1072. Elsevier, Amsterdam, 1990.

[12] Ansgar Fehnker. Scheduling a steel plant with timed automata. InRTCSA,
pages 280–286. IEEE Computer Society, 1999.

[13] Kathi Fisler and Robert P. Kurshan. Verifying VHDL designs with COSPAN.
In Thomas Kropf, editor,Formal Hardware Verification, volume 1287 ofLec-
ture Notes in Computer Science, pages 206–247. Springer, 1997.

[14] Wan Fokkink, Jan Friso Groote, Jun Pang, Bahareh Badban, and Jaco van de
Pol. Verifying a sliding window protocol inµCRL. In Charles Rattray, Savi
Maharaj, and Carron Shankland, editors,AMAST, volume 3116 ofLecture
Notes in Computer Science, pages 148–163. Springer, 2004.

[15] Microsoft Research Centre for Computational and Systems Biology.
http://dit.unitn.it/˜bioinfo/index.php?option=com_
content&task=view&id=22&Itemid=51 .

[16] Oded Goldreich and Avi Wigderson. Theory of computation: A scientific
perspective, 2001. Available fromhttp://www.wisdom.weizmann.
ac.il/˜oded/toc-sp2.html .

[17] Jan Friso Groote, Jun Pang, and Arno G. Wouters. Analysis of a distributed
system for lifting trucks.J. Log. Algebr. Program., 55(1-2):21–56, 2003.

[18] Joseph Y. Halpern, Robert Harper, Neil Immerman, Phokion G. Kolaitis,
Moshe Y. Vardi, and Victor Vianu. On the unusual effectiveness of logic
in computer science.Bull. Symbolic Logic, 7(2):213–236, 2001.

[19] D. Harel and A. Pnueli. On the development of reactive systems. InLogics
and models of concurrent systems (La Colle-sur-Loup, 1984), volume 13 of
NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., pages 477–498. Springer-
Verlag, Berlin, 1985.

11

http://dit.unitn.it/~bioinfo/index.php?option=com_content&task=view&id=22&Itemid=51
http://dit.unitn.it/~bioinfo/index.php?option=com_content&task=view&id=22&Itemid=51
http://www.wisdom.weizmann.ac.il/~oded/toc-sp2.html
http://www.wisdom.weizmann.ac.il/~oded/toc-sp2.html


[20] David Harel.Computers Ltd.: What They Really Can’t Do. Oxford University
Press, 2000.

[21] Klaus Havelund, Arne Skou, Kim Guldstrand Larsen, and K. Lund. Formal
modeling and analysis of an audio/video protocol: an industrial case study
usingUPPAAL. In IEEE Real-Time Systems Symposium, pages 2–13. IEEE
Computer Society, 1997.

[22] Gerard J. Holzmann.The SPIN Model Checker: Primer and Reference Man-
ual. Addison Wesley, 2003.

[23] Clay Mathematical Institute. The millennium problems: P vs NP problem.
http://www.claymath.org/millennium/P_vs_NP/ .

[24] Michael J. Kearns and Umesh V. Vazirani.An Introduction to Computational
Learning Theory. MIT Press, Cambridge, MA, 1994.

[25] R.M. Keller. Formal verification of parallel programs.Communications of
the ACM, 19(7):371–384, 1976.

[26] Jan van Leeuwen, editor.Handbook of Theoretical Computer Science. Else-
vier and MIT Press, 1990. Volume A: Algorithms and Complexity. Volume
B: Formal Models and Semantics.

[27] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publ.,
1993.

[28] Rajeev Motwani and Prabhakar Raghavan.Randomized Algorithms. Cam-
bridge University Press, August 1995.

[29] Merriam-Webster OnLine.http://www.webster.com/ .

[30] Christos H. Papadimitriou. Database metatheory: Asking the big queries. In
Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 22-25, 1995, San Jose, California,
pages 1–10. ACM Press, 1995.

[31] Amir Pnueli. The temporal logic of programs. InProceedings18 th Annual
Symposium on Foundations of Computer Science, pages 46–57. IEEE, 1977.

[32] Jacob Illum Rasmussen, Kim Guldstrand Larsen, and K. Subramani.
Resource-optimal scheduling using priced timed automata. In Kurt Jensen
and Andreas Podelski, editors,TACAS, volume 2988 ofLecture Notes in
Computer Science, pages 220–235. Springer, 2004.

12

http://www.claymath.org/millennium/P_vs_NP/
http://www.webster.com/


[33] Patrick Regan and Scott Hamilton. NASA’s mission reliable.Computer,
2004. Available from http://www.computer.org/computer/
homepage/0104/Regan/ .

[34] Michael Sipser.Introduction to the Theory of Computation. PWS Publishing
Company, 1997.

[35] Terese.Term Rewriting Systems, volume 55 ofCambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, 2003.

[36] Wolfgang Thomas. Automata on infinite objects. InHandbook of theoretical
computer science, Vol. B, pages 133–191. Elsevier, Amsterdam, 1990.

[37] Luca Trevisan. Some applications of coding theory in computational com-
plexity. Electronic Colloquium on Computational Complexity (ECCC), 043,
2004.

[38] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem.Proc. Lond. Math. Soc., 42(2):230–265, 1937. Available at
http://www.abelard.org/turpap2/tp2-ie.asp .

[39] Leslie G. Valiant.Circuits of the Mind. Oxford University Press Inc, USA,
January 2001. Paperback 254 pages.

[40] Leslie G. Valiant. Three problems in computer science.Journal of the ACM,
50(1):96–99, 2003.

[41] Junfeng Yang, Paul Twohey, Dawson R. Engler, and Madanlal Musuvathi.
Using model checking to find serious file system errors. InOSDI, pages 273–
288, 2004.

[42] Andrew Chi-Chih Yao. Classical physics and the Church-Turing thesis.Jour-
nal of the ACM, 50(1):100–105, 2003.

13

http://www.computer.org/computer/homepage/0104/Regan/
http://www.computer.org/computer/homepage/0104/Regan/
http://www.abelard.org/turpap2/tp2-ie.asp

	Introduction and Overview
	Concurrency Theory

