
A Ground-Complete Axiomatization of Stateless
Bisimilarity over LindaI

Luca Acetoa,b,∗, Anna Ingolfsdottira, Eugen-Ioan Goriacc

aICE-TCS, School of Computer Science, Reykjavik University, Menntavegur 1, IS 101
Reykjavik, Iceland

bGran Sasso Science Institute, INFN, Viale F. Crispi 7, 67100 L’Aquila, Italy
cIcelandic Heart Association, Holtasmári 1, IS-201 Kópavogur, Iceland

Abstract

This paper offers a finite, ground-complete axiomatization of stateless bisimilar-
ity over the tuple-space-based coordination language Linda. As stepping stones
towards that result, axiomatizations of stateless bisimilarity over the sequential
fragment of Linda without the nask primitive, and over the full sequential sub-
language are given. It is also shown that stateless bisimilarity coincides with
standard bisimilarity over the sequential fragment of Linda without the nask
primitive.

Keywords: Concurrency, process algebra, stateless bisimilarity, Linda,
equational logic

1. Introduction

The goal of this paper is to contribute to the study of equational axiom-
atizations of behavioural equivalences for processes with data—see, e.g., the
references [14, 18, 19, 20] for earlier contributions to this line of research.
Specifically, we present a ground-complete axiomatization of stateless bisimi-
larity from [8, 12, 17, 24] over the well-known, tuple-space-based coordination
language Linda [11, 15].

Linda is a, by now classic, example from a family of coordination languages
that focus on the explicit control of interactions between parallel processes.
(More modern coordination languages are Reo [2] and BIPL [5, 7].) A com-
munication between Linda processes takes place by accessing tuples in a shared

IThe authors have been partially supported by the projects ‘Meta-theory of Alge-
braic Process Theories’ (nr. 100014021) and ‘Nominal Structural Operational Semantics’
(nr. 141558-051) of the Icelandic Research Fund. Eugen-Ioan Goriac was also funded by the
project ‘Extending and Axiomatizing Structural Operational Semantics: Theory and Tools’
(nr. 1102940061) of the Icelandic Research Fund.

∗Corresponding author
Email addresses: luca@ru.is (Luca Aceto), annai@ru.is (Anna Ingolfsdottir),

eugen.goriac@me.com (Eugen-Ioan Goriac)

Preprint submitted to Elsevier Wednesday 14th May, 2014

memory, called the tuple space, which is a multiset of tuples. The communication
mechanism in Linda is asynchronous, in that send operations are non-blocking.
Our presentation of the syntax and the semantics of Linda follows those given
in [9, 24].

In the light of its intuitive appeal and impact, Linda has received a fair
amount of attention within the concurrency theory community. For instance, the
relative expressive power of fragments of Linda has been studied in [9] and the
paper [14] studies testing semantics, in the sense of De Nicola and Hennessy [13],
over applicative and imperative process algebras that are inspired by Linda. The
paper [13] also provides complete inequational axiomatizations of the studied
calculi with respect to testing semantics.

Testing semantics can be viewed as the most natural notion of behavioural
equivalence for a language from the programmer’s perspective. Indeed, it is
the formalization of the motto that ‘two program fragments should be consid-
ered equivalent unless there is a context/test that tells them apart.’ Testing
semantics is, however, not very robust. In particular, if one extends a language
with new features that increase the observational power of tests, the resulting
notion of ‘testing equivalence’ for the extended language will be finer than the
one for the original language. This means that the results one had worked hard
to establish for the original language will have to be established anew.

Stateless bisimilarity [8, 12, 17, 24] is a variation on the classic notion of
bisimilarity [21, 25] that is suitable for reasoning compositionally about open,
concurrent and state-bearing systems. It is the finest notion of bisimilarity for
state-bearing processes that one can find in the literature and comes equipped
with a congruence rule format for operational rules [24]. It is therefore interest-
ing to study its equational theory in the setting of a seminal language like Linda,
not least because equational axiomatizations of stateless bisimilarity may form
the core of axiom systems for coarser notions of equivalence over that language.

The main contribution of this paper is a ground-completeness result for
stateless bisimilarity over Linda given in Section 3. We first present a complete
axiom system for stateless bisimilarity over the sequential fragment of Linda
without the nask primitive, which tests for the absence of a tuple in the tuple
space (Theorem 3.2). Interestingly, it turns out that stateless bisimilarity over
this fragment of Linda has the same axiomatization of standard bisimilarity,
when the considered sub-language of Linda is viewed as Basic Process Algebra
(BPA) with deadlock and the empty process [26]. We formalize the connec-
tion between the two languages and their respective semantics, culminating in
Theorem 3.4.

Next we offer a ground-complete axiomatization of stateless bisimilarity over
the full sequential fragment of Linda (Section 3.1). In this setting, we have to
deal with the subtle interplay of ask and nask primitives, which test for the pres-
ence and absence of some tuple in the tuple space, respectively. In Theorem 3.5,
we show that two equation schemas are enough to capture equationally the ef-
fect that combinations of ask and nask primitives may have on the behaviour
of Linda terms.

Following rather standard lines, we give a ground-complete axiomatization

2

of stateless bisimilarity over the full Linda language we consider in this paper
in Section 3.2.

We end the paper by comparing our work with that presented in [10] (Sec-
tion 4), as well as with some concluding remarks and suggestions for future
research (Section 5).

2. Preliminaries

In this section we present the syntax and operational semantics for the clas-
sic, tuple-space-based coordination language Linda [11, 15]. (Our presentation
follows those given in [9, 24].) Moreover, we introduce the notion of stateless
bisimilarity and the basic definitions from equational logic used in this paper.

Linda’s signature ΣD for data (the so-called tuple space) consists of the
constant ∅ for the empty tuple space, a (possibly infinite) set U of constants
standing for memory tuples and a binary separator that is associative and
commutative, but not idempotent, and has ∅ as left and right unit. (The store
is a multiset of tuples.) The set T (ΣD) of closed data terms is given, therefore,
by the following BNF grammar:

d ::= ∅ | u | d d,

where u ∈ U . Each data term d determines a multiset {u1, . . . , uk} of tuples
in the obvious way. In what follows, we write u ∈ d when there is at least one
occurrence of the tuple u in the multiset denoted by d.

Following [9], the signature ΣP for Linda is implicitly given by the BNF
grammar defining the set T(ΣP) of open process terms over a countably infinite
set VP of process variables:

t ::= x | δ | ε | ask(u) | nask(u) | tell(u) | get(u) | t+ t | t; t | t ‖ t,

where x ∈ VP and u ∈ U . Closed terms are terms without occurrences of
variables. The set of closed process terms is denoted by T (ΣP). A substitution
σ is a function of type VP → T(ΣP). A closed substitution is a substitution
whose range is included in T (ΣP). We write σ(t) for the term resulting by
replacing each occurrence of a variable x in t with the term σ(x). Note that
σ(t) is a closed term whenever σ is a closed substitution.

Intuitively, δ is a constant process that symbolizes deadlock, which satisfies
no predicates and performs no actions. The constant ε denotes a process that
satisfies the successful termination predicate, denoted by ↓ in what follows, and
performs no action. The constants ask, nask, tell, and get are the basic Linda
instructions for operating with the data component. ask(u) and nask(u) check
whether tuple u is and, respectively, is not in the store. tell(u) adds tuple u to
the store, while get(u) removes one of its occurrences if it is present. The ask(u),
get(u) and nask(u) operations are blocking, in the sense that a process executing

3

them blocks if u is not in the tuple space for ask and get , and if it is in the tuple
space for nask. The operations + , ; and ‖ are, respectively, the standard
alternative, sequential and interleaving parallel composition operations familiar
from process algebras—see, for instance, [3].

Definition 2.1 (Transition System Specification for Linda). The operational
semantics of Linda is given in terms of a unary immediate termination predicate
↓ and a binary transition relation −→ over configurations of the form (p, d), with
p ∈ T (ΣP) and d ∈ T (ΣD). Intuitively, (p, d) ↓ means that the process term p
can terminate immediately in the context of the tuple space d, whereas

(p, d) −→ (p′, d′)

indicates that the configuration (p, d) can evolve into (p′, d′) in one computa-
tional step. Formally, ↓ and −→ are the least relations over configurations satis-
fying the following set of rules.

(ε, d) ↓
(x, d) ↓

(x+ y, d) ↓
(y, d) ↓

(x+ y, d) ↓
(x, d) ↓ (y, d) ↓

(x ; y, d) ↓
(x, d) ↓ (y, d) ↓

(x ‖ y, d) ↓

(ask(u), d u)→ (ε, d u) (tell(u), d)→ (ε, d u)

(get(u), d u)→ (ε, d) (nask(u), d)→ (ε, d)
[u 6∈ d]

(x, d)→ (x′, d′)

(x+ y, d)→ (x′, d′)

(y, d)→ (y′, d′)

(x+ y, d)→ (y′, d′)

(x, d)→ (x′, d′)

(x ; y, d)→ (x′ ; y, d′)

(x, d) ↓ (y, d)→ (y′, d′)

(x ; y, d)→ (y′, d′)

(x, d)→ (x′, d′)

(x ‖ y, d)→ (x′ ‖ y, d′)
(y, d)→ (y′, d′)

(x ‖ y, d)→ (x ‖ y′, d′)

Note that the predicate ↓ is independent of the data component in a config-
uration, that is, if (p, d) ↓ for some p ∈ T (ΣP) and d ∈ T (ΣD), then (p, d′) ↓
also holds for each d′ ∈ T (ΣD).

Throughout the paper we use the notion of stateless bisimilarity from [8, 12,
17, 24] as our notion of behavioural equivalence over closed Linda process terms.
Stateless bisimilarity is the finest notion of bisimilarity for state-bearing pro-
cesses that one can find in the literature. It is a variation on strong bisimilarity
for processes with data in which the behaviour of process terms is compared in
the context of all possible data terms, and that allows for interference from ‘the
environment’ in the data part after each transition. This makes stateless bisim-
ilarity suitable for reasoning compositionally about open concurrent systems.

4

Definition 2.2 (Stateless Bisimilarity). A relation R ⊆ T (ΣP) × T (ΣP) is a
stateless bisimulation if, and only if, it is symmetric and the following conditions
hold for each (p, q) ∈ R:

• for all p′ ∈ T (ΣP) and d, d′ ∈ T (ΣD), if (p, d)−→ (p′, d′) then there is
some q′ ∈ T (ΣP) such that (q, d)−→ (q′, d′) and (p′, q′) ∈ R;

• for each d ∈ T (ΣD), if (p, d) ↓ then (q, d) ↓.

Two closed process terms p and q are stateless bisimilar, denoted by p↔sl q, if
there exists a stateless bisimulation R such that (p, q) ∈ R. Stateless bisimilarity
is extended to open terms in the standard way: two open terms t, t′ ∈ T(ΣP)
are stateless bisimilar when σ(t)↔sl σ(t′) holds for each closed substitution σ.

Example 1. The processes tell(u) ‖ get(u) and tell(u); get(u) + get(u); tell(u)
are stateless bisimilar for each tuple u. Indeed, using the rules in Definition 2.1,
it is not hard to check that the symmetric closure of the relation R, consisting
of the pair

(tell(u) ‖ get(u), tell(u); get(u) + get(u); tell(u))

and the pairs

(ε ‖ get(u), ε; get(u)), (tell(u) ‖ ε, ε; tell(u)), (ε ‖ ε, ε),

is a stateless bisimulation.

Example 2. Consider the terms ask(u)+nask(u) and ask(v)+nask(v), where u
and v are (possibly different) tuples. By Definition 2.2, these terms are stateless
bisimilar as they both transition to ε, independently of the data term d ∈ T (ΣD)
with which they are paired up, leaving the data term d unchanged.

Definition 2.3 (Congruence). Let Σ be a signature. An equivalence relation
∼ over Σ-terms is a congruence if, for all f ∈ Σ and closed terms p1, . . . , pn
and q1, . . . , qn, where n is the arity of f , if pi ∼ qi for each i ∈ {1, . . . , n} then
f(p1, . . . , pn) ∼ f(q1, . . . , qn).

The following result is easy to show.

Proposition 3. ↔sl is a congruence for Linda.

Definition 2.4 (Axiom system, Derivability [3]). An axiom system is a pair
(Σ, E), where Σ is a signature and E is a set of axioms (equations) of the form
s = t, where s, t ∈ T(Σ).

By ` we denote the well known notion of derivability in equational logic—
closure under substitutions and contexts, and the fact that equality is an equiv-
alence relation are the means through which one can derive equations.

An axiom system (Σ, E) is often identified with the set of equations E when
the signature Σ is clear from the context.

5

Example 4. The following axiom system E1 over the signature for Linda co-
incides with the one for BPA with the empty process and δ proposed in [26,
Table 4, page 291].

x+ y = y + x (e1)
x+ (y + z) = (x+ y) + z (e2)

ε+ ε = ε (e3)
ε+ δ = ε (e4)

(x+ y); z = (x; z) + (y; z) (e5)
x; (y; z) = (x; y); z (e6)

δ;x = δ (e7)
ε;x = x (e8)
x; ε = x (e9)

Using it, one can derive, for example, the following equations, which state that
the + operation is idempotent and has δ as unit element:

x+ x = x (1)

x+ δ = x. (2)

The basic sanity criterion for an axiom system is that it only allows one to
derive valid equalities between terms. This is the so-called soundness property,
which is formalized in the following definition in the setting of Linda modulo
stateless bisimilarity.

Definition 2.5 (Soundness). An axiom system E over ΣP is sound when, for
all s, t ∈ T(ΣP), if E ` s = t then s↔sl t.

The following result can be shown following standard lines.

Lemma 5. E1 is sound for stateless bisimilarity over Linda.

Given a finite index set I = {i1, . . . , in} and an indexed set of terms {ti}i∈I ,
we write

∑
i∈I ti for ti1 + · · ·+tin . An empty sum stands for δ. (The generalized

sum notation is justified since, by the above lemma and the derivability of
equation (2), the + operation is associative, commutative and has δ has unit
element, modulo stateless bisimilarity.)

Ideally, one would like to have axiom systems that are strong enough to prove
all the equalities that are valid with respect to the chosen notion of equivalence
over Linda. As is customary in the literature on process calculi, in what follows
we will focus on ground-complete axiom systems.

Definition 2.6 (Ground Completeness). An axiom system E is ground com-
plete when, for all p, q ∈ T (ΣP), if p↔sl q then E ` p = q.

6

3. Axiomatization

In this section we provide a sound and ground complete axiomatization for
stateless bisimilarity over the collection of Linda process terms. The axiom sys-
tem is finite if the tuple names mentioned in the axioms are taken to be variables
ranging over tuples. We build the axiomatization incrementally starting with
all the operations except for nask and ‖ . Then we discuss the issues nask poses
and how to overcome them by means of two equations (Section 3.1). In order
to avoid cluttering previous explanations, the axiomatization for ‖ comes only
at the end and will be given following standard lines (Section 3.2).

We proceed by introducing the notion of normal form of a Linda process
term, which plays a crucial role in proving the completeness of the proposed
axiomatization.

Definition 3.1 (Normal Form). A term t ∈ T (ΣP) is in normal form if it is of
the form (

∑
i∈I ai(ui); ti)[+ε] (that is, either

∑
i∈I ai(ui); ti or (

∑
i∈I ai(ui); ti)+

ε), with I a finite, possibly empty, index set, ai ∈ {ask,nask, tell, get}, ui ∈ U
and ti is in normal form for each i ∈ I.

The terms ai(ui); ti (i ∈ I) and ε, if present, are called the summands of
(
∑
i∈I ai(ui); ti)[+ε].
An axiom system E over ΣP is normalizing for t ∈ T (ΣP) if there exists a

term t′ ∈ T (ΣP) in normal form such that E ` t = t′.

In what follows, we let Σ1
P be ΣP without the operations ‖ and nask(u),

for all u ∈ U , and Σ2
P be ΣP without the operation ‖ . The following lemma

can be shown following standard lines.

Lemma 6. E1 is normalizing for each closed term in Σ2
P .

Theorem 3.2. E1 is sound and ground complete for stateless bisimilarity over
T (Σ1

P).

Proof. The soundness of the axiom system is given in Lemma 5.
In order to establish the ground completeness of E1, we shall prove that, for

all p, q ∈ T (Σ1
P),

p↔sl q ⇒ E1 ` p = q.

(Note that we may assume, by Lemma 6, that p and q are in normal form.)
To this end, we first define the function height that computes the height of the
syntax tree associated with a term t ∈ T (Σ1

P):

height(p) =

{
0 if p is a constant,
1 + max(height(p1), height(p2)) if p = p1 + p2 or p1; p2.

We prove the claim by induction on M = max(height(p), height(q)).

Base case: If M = 0 then p = q = δ, because none of the terms in the set
{ε} ∪ {ask(u), tell(u), get(u) | u ∈ U} is in normal form, and the claim follows
immediately by reflexivity.

7

Inductive step, M > 0: In order to show that p = q we argue that each summand
of p is provably equal to a summand of q. We proceed by examining the possible
forms a summand of p may have.

• Assume that ε is a summand of p. Then (p, ∅) ↓. As p↔sl q, it holds that
(q, ∅) ↓. Since q is in normal form, ε is also a summand of q.

• Let ask(u); p′ be a summand of p. This yields that (p, u) −→ (ε; p′, u). As
p↔sl q and q is in normal form, we have that (q, u) −→ (ε; q′, u) for some
q′ such that ε; p′↔sl ε; q

′. This means that q has the summand ask(u); q′.
Indeed, the primitives tell(u′), for each u′ ∈ U , and get(u) alter the tuple
space u, and, if u′ 6= u, neither ask(u′) nor get(u′) can be performed in the
context of the tuple space u. Since max(height(p′), height(q′)) < M and
p′↔sl q

′, we may use the induction hypothesis to infer that E1 ` p′ = q′.
Hence, by substitutivity, E1 ` ask(u); p′ = ask(u); q′.

• Let tell(u); p′ be a summand of p. This yields that (p, ∅) −→ (ε; p′, u). As
p↔sl q and q is in normal form, we have that (q, ∅) −→ (ε; q′, u) for some
q′ such that ε; p′↔sl ε; q

′. This means that q has the summand tell(u); q′,
as tell(u) is the only Linda primitive that can transform the empty tuple
space into u. The proof now proceeds as in the above case.

• Let get(u); p′ be a summand of p. This yields that (p, u) −→ (ε; p′, ∅). As
p↔sl q and q is in normal form, we have that (q, u) −→ (ε; q′, ∅) for some
q′ such that ε; p′↔sl ε; q

′. This means that q has the summand get(u); q′,
as get(u) is the only Linda primitive that can transform u into the empty
tuple space. The proof now proceeds as above.

As each summand of p is provably equal to a summand of q, we have that
E1 ` q = p + q. (Note that, in the case that p = δ + ε, this equality can be
derived using equations (1) and (2).) By symmetry, E1 ` p = p + q too, and
therefore E1 ` p = q.

The import of the above result is that stateless bisimilarity over T (Σ1
P) has

the same axiomatization as standard strong bisimilarity [21, 25] over BPA with
the empty process and δ. This may seem surprising at first sight, since the
definition of stateless bisimilarity over Linda given in Definition 2.2 is based on
an unlabelled transition system semantics, whereas strong bisimilarity is based
on a labelled transition system semantics. However, as the proof of the ground-
completeness result given above indicates, the effect on the tuple space of the
execution of the primitive operations in Linda considered so far, in combination
with the definition of stateless bisimilarity, essentially encodes the primitive op-
eration that is being executed in an unlabelled computational step. We now
make this intuition precise, by showing how the problem of axiomatizing state-
less bisimilarity over T (Σ1

P) can be reduced to that of axiomatizing ordinary
bisimilarity over that language.

8

ε ↓
x ↓

x+ y ↓
y ↓

x+ y ↓
x ↓ y ↓
x ; y ↓

ask(u)
ask(u)→ ε tell(u)

tell(u)→ ε get(u)
get(u)→ ε

x
α→ x′

x+ y
α→ x′

y
α→ y′

x+ y
α→ y′

x
α→ x′

x ; y
α→ x′ ; y

x ↓ y
α→ y′

x ; y
α→ y′

Figure 1: SOS rules for the labelled transition system semantics for T (Σ1
P) (α ∈ A+)

Let A+ = {ask(u), tell(u), get(u) | u ∈ U}. We define a partial function
upd : A+ × T (ΣD)→ T (ΣD) as follows, where d ∈ T (ΣD) and u ∈ U :

upd(ask(u), d u) = d u,

upd(get(u), d u) = d and

upd(tell(u), d) = d u.

Intuitively, upd(α, d) = d′ holds for some α ∈ A+ and d, d′ ∈ T (ΣD) if, and only
if, the primitive operation α can be executed in the context of the tuple space
represented by d and its execution results in the tuple space represented by d′.
For example, the first equation in the definition of the function upd specifies
that upd(ask(u), d) is only defined if u ∈ d, and that the execution of ask(u)
leaves d unchanged.

The following lemma connects the transition system semantics for T (Σ1
P)

given in Definition 2.1 with the standard labelled transition system semantics
that T (Σ1

P) inherits when viewed as BPA, with ε and δ, over the set of actions
A+, which is given in Figure 1.

Lemma 7. For all p, p′ ∈ T (Σ1
P) and d, d′ ∈ T (ΣD),

(p, d) −→ (p′, d′)⇔ ∃α ∈ A+. p
α→ p′ and upd(α, d) = d′.

Proof. Both implications can be shown by induction on the proof of the relevant
transition. We omit the straightforward details.

As an easy, but useful, corollary of the above lemma and of the definition of
the upd function, we have the following observations.

Corollary 8. For all p, p′ ∈ T (Σ1
P) and u ∈ U , the following statements hold:

1. (p, u) −→ (p′, u) if, and only if, p
ask(u)→ p′;

2. (p, u) −→ (p′, ∅) if, and only if, p
get(u)→ p′; and

9

3. (p, ∅) −→ (p′, u) if, and only if, p
tell(u)→ p′.

For the sake of clarity, we now recall the standard definition of bisimilarity
in the presence of the termination predicate.

Definition 3.3 (Bisimilarity). A relation R ⊆ T (Σ1
P)×T (Σ1

P) is a bisimulation
if and only if it is symmetric and, whenever (p, q) ∈ R, the following conditions
hold:

• ∀p′ ∈ T (Σ1
P). p

α→ p′ ⇒ ∃q′ ∈ T (Σ1
P). q

α→ q′ ∧ (p′, q′) ∈ R;

• p ↓ ⇒ q ↓.

Two closed process terms p and q are bisimilar, denoted by p↔ q, if there exists
a bisimulation R such that (p, q) ∈ R. Bisimilarity is extended to open terms in
the standard way: two open terms t, t′ ∈ T(Σ1

P) are bisimilar when σ(t)↔ σ(t′)
holds for each closed substitution σ.

Theorem 3.4. Stateless bisimilarity and bisimilarity coincide over T (Σ1
P)—

that is, p↔sl q if, and only if, p↔ q, for all p, p′ ∈ T (Σ1
P).

Proof. Using Corollary 8, it is not hard to show that ↔sl is a bisimulation and,
using Lemma 7, one proves that ↔ is a stateless bisimulation. In establishing
both claims, we use the simple observation that, for all p ∈ T (Σ1

P),

p ↓ if, and only if, (p, d) ↓ for all d ∈ T (ΣD),

and that, as remarked earlier, the predicate ↓ from Definition 2.1 is independent
of the data component in a configuration.

The above result yields an alternative, but less direct, proof of Theorem 3.2
by reducing the problem of axiomatizing stateless bisimilarity over T (Σ1

P) to
that of axiomatizing bisimilarity over that language. It is well known that
bisimilarity is axiomatized by the axiom system E1 over T (Σ1

P)—see, e.g., [4].

3.1. Adding the nask operations

As we proved above, the axiom system E1 is ground complete for stateless
bisimilarity over T (Σ1

P). However, when we add the nask operations to Σ1
P ,

E1 is not ground complete any more. To see this, recall that in Example 2 we
argued that ask(u) + nask(u)↔sl ask(v) + nask(v) holds, even when the tuples
u and v are distinct. The axiom system E1, however, does not suffice to prove
that equality when u 6= v.

Consider the axiom system E2, which is obtained by adding the following
equations to E1.

ask(u) + nask(u) + ask(v) = ask(u) + nask(u) for all u, v ∈ U (e10)
ask(u) + nask(u) + nask(v) = ask(u) + nask(u) for all u, v ∈ U (e11)

10

Note that, using the above equations, one may derive the following ones:

ask(u) + nask(u) + ask(w) = ask(v) + nask(v) for all u, v, w ∈ U ,
ask(u) + nask(u) + nask(w) = ask(v) + nask(v) for all u, v, w ∈ U .

Our order of business in the remainder of this subsection is to show that E2

is sound and ground complete modulo stateless bisimilarity over T (Σ2
P). (Recall

that Σ2
P is ΣP without the operation ‖ .)

For each p = (
∑
i∈I ai(ui); pi)[+ε] ∈ T (Σ2

P) in normal form, let:

• pan =
∑
i∈I, ai is ask or nask ai(ui); pi,

• pgt =
∑
i∈I, ai is get or tell ai(ui); pi.

The following ‘decomposition lemma’ will be useful in establishing the desired
completeness result.

Lemma 9. Let p, q ∈ T (Σ2
P) be two terms in normal form. Then p and q are

stateless bisimilar if, and only if,

1. pan↔sl qan,

2. pgt↔sl qgt, and

3. ε is a summand of p if, and only if, it is a summand of q.

Proof. The ‘if’ implication follows because, by Proposition 3, stateless bisimi-
larity is preserved by +. Assume now that p and q are stateless bisimilar normal
forms. We shall show that statements 1–3 hold. Statement 3 is immediate since,
for each term t in normal form, (t, ∅) ↓ if, and only if, ε is a summand of t. To
prove the other two statements, it suffices to show that the relation

R = {(pan, qan), (pgt, qgt) | p, q are in normal form and p↔sl q} ∪ ↔sl

is a stateless bisimulation. First of all, note that, since ↔sl is symmetric, so is
R. We limit ourselves to presenting the verification of the stateless bisimulation
conditions for a pair of the form (pan, qan) ∈ R. The proof for pairs of the form
(pgt, qgt) ∈ R is similar and we omit it.

Let d ∈ T (ΣD). By definition of pan, we have that (pan, d) ↓ does not hold.
Hence the second clause in Definition 2.2 is met vacuously. Assume now that
(pan, d)−→ (p′, d′) for some p′ and d′. Then there is a summand ai(ui); pi of
pan such that ‘ai(ui) is enabled in the context of d’, p′ = ε; pi and d = d′.
Since ai(ui); pi is also a summand of p, we have that (p, d)−→ (p′, d). From our
assumption that p and q are stateless bisimilar, we infer that (q, d)−→ (q′, d)
for some q′ such that p′ ↔sl q

′. Since the execution of get and tell primitives
modifies the tuple space d, the above transition is due to a summand of q that
is also a summand of qan. Thus, (qan, d)−→ (q′, d) for some q′ such that p′↔sl q

′.
Since ↔sl is included in R, we are done.

Theorem 3.5. E2 is sound and ground complete modulo stateless bisimilarity
over T (Σ2

P).

11

Proof. It is easy to check that equations (e10) and (e11) are sound.
In order to establish the ground completeness of E2, we shall prove that, for

all p, q ∈ T (Σ2
P),

p↔sl q ⇒ E2 ` p = q.

Assume that p ↔sl q. We shall prove the claim above by induction on M =
max(height(p), height(q)), where the function height from the proof of Theo-
rem 3.2 is extended to T (Σ2

P) by setting

height(nask(u)) = 0.

By Lemma 6, we may assume that p, q are in normal form. Our induction
hypothesis is that E2 ` p′ = q′ for all p′, q′ such that p′ ↔sl q

′ and M >
max(height(p′), height(q′)).

By Lemma 9, pgt and qgt are stateless bisimilar and they can be proved equal
by mimicking the proof of Theorem 3.2. Using again Lemma 9, we have that
pan and qan are also stateless bisimilar. We claim that

E2 ` pan = qan, (3)

from which the equality p = q follows by substitutivity, also in the light of the
last statement in Lemma 9.

In order to show the above claim, note, first of all, that, modulo E2, we may
assume that pan and qan are in the adapted normal forms

pan =
∑
i∈I

(
∑
j∈Ji

aj(uj)); pi and

qan =
∑
i∈I

(
∑
k∈Ki

bk(vk)); pi,

where Ji and Ki are non-empty index sets (i ∈ I), aj , bk ∈ {ask,nask} and
E2 6` pi = pj (or, equivalently, pi 6↔sl pj), for all i, j ∈ I such that i 6= j. To
see this, assume that pan =

∑
`∈L a`(u`); p` and that p`1 ↔sl p`2 , for some

`1, `2 ∈ L. Since

max(height(p`1), height(p`2)) < height(pan) ≤ height(p) ≤M,

we may use the inductive hypothesis to obtain that E2 ` p`1 = p`2 . Therefore,
modulo E2,

pan =
∑
`∈L

a`(u`); p
′
`,

where p′` ∈ {ph | h ∈ L and p` ↔sl ph} is a canonical representative of the
equivalence class of the ‘suffixes’ of pan that are stateless bisimilar to p`, for
each ` ∈ L. For this reason, we can group all the summands of pan with the

12

same suffix pi modulo E2 by applying equation (e5) from right to left as needed.
This puts pan in the desired form, namely

pan =
∑
i∈I

(
∑
j∈Ji

aj(uj)); pi.

(Note that each Ji is non-empty.) Let qan =
∑
h∈H bh(vh); qh. Since pan and

qan are stateless bisimilar, it is not hard to see that, for each h ∈ H, there is
some i ∈ I such that pi ↔sl qh. Using the inductive hypothesis as above, the
equality pi = qh can be proved from E2. This means that qan can be put in the
form

∑
i∈I(

∑
k∈Ki

bk(vk)); pi, by substitutivity and applying equation (e5) form
right to left as needed. (Note that, since pan↔sl qan, each Ki is non-empty.)

In order to show claim (3), it therefore suffices to show that Ci =
∑
j∈Ji aj(uj)

is provably equal to Di =
∑
k∈Ki

bk(vk), for each i ∈ I.
For a fixed i ∈ I, we consider the two sums of ask and nask terms Ci and

Di. Since E2 proves equation (1), to the effect that + is idempotent, we may
assume in what follows that all the summands of Ci and Di are different. We
shall prove that E2 ` Ci = Di by case analysis on their possible form.

1. Ci = ask(u) + nask(u) + C ′ and Di = ask(v) + nask(v) + D′, for some
u, v ∈ U and C ′, D′. (Note that, in the light of equation (2), C ′ and D′

may be δ.) Then the equality Ci = Di can be shown by using equations
(e10) and (e11) repeatedly.

2. Ci = ask(u)+nask(u)+C, for some u ∈ U and C, and Di =
∑
k∈Ki

bk(vk),
with vk1 6= vk2 whenever k1 6= k2, for all k1, k2 ∈ Ki. We shall argue that
this case is impossible, since it contradicts the assumption that pan and
qan are stateless bisimilar.
By using equations (e10) and (e11) repeatedly, we can derive the equation
Ci = ask(u) + nask(u). It is easy to see that (Ci, d) −→ (ε, d), for each
d ∈ T (ΣD). Therefore (pan, d) −→ (ε; pi, d), for each d ∈ T (ΣD). However,
since Di =

∑
k1∈K1

i
ask(vk1) +

∑
k2∈K2

i
nask(vk2) with K1

i ∩K2
i = ∅ and

K1
i ∪K2

i = Ki, the tuple space d′ = {vk2 | k2 ∈ K2
i } ‘blocks’ Di (no tran-

sition can be performed from (Di, d
′)). This means that (qan, d

′) does not
have a transition leading to (ε; pi, d

′), which contradicts the assumption
that pan and qan are stateless bisimilar.

3. Di = ask(u)+nask(u)+D, for some u ∈ U and D, and Ci =
∑
k∈Ki

bk(vk),
with vk1 6= vk2 whenever k1 6= k2, for all k1, k2 ∈ Ki. This case is sym-
metric to the one above.

4. Assume that none of the previous cases applies. Let

Ci =
∑
j1∈J1

i

ask(vj1) +
∑
j2∈J2

i

nask(vj2),

with J1
i ∩ J2

i = ∅ and J1
i ∪ J2

i = Ji, and

Di =
∑
k1∈K1

i

ask(vk1) +
∑
k2∈K2

i

nask(vk2),

13

with K1
i ∩K2

i = ∅ and K1
i ∪K2

i = Ki. We have that vj1 6= vj2 , for each
j1 ∈ J1

i and j2 ∈ J2
i , and vk1 6= vk2 , for each k1 ∈ K1

i and k2 ∈ K2
i .

We show that each summand in Ci appears in Di, and vice versa, by
reductio ad absurdum. We consider the following four cases, each of which
contradicts the assumption that pan and qan are stateless bisimilar.

• Suppose J1
i \K1

i 6= ∅. Then d = {vl | l ∈ (J1
i \K1

i) ∪K2
i } ‘blocks’

Di, but (Ci, d) −→ (ε, d). This means that (qan, d) does not have a
transition leading to (ε; pi, d), whereas (pan, d) does. This contradicts
the assumption that pan and qan are stateless bisimilar.

• Suppose K1
i \ J1

i 6= ∅. The proof for this case is similar to that for
the previous one.

• Suppose J2
i \ K2

i 6= ∅. Then d = {vl | l ∈ K2
i } ‘blocks’ Di, but

(Ci, d) −→ (ε, d). This means that (qan, d) does not have a transi-
tion leading to (ε; pi, d), whereas (pan, d) does. This contradicts the
assumption that pan and qan are stateless bisimilar.

• Suppose K2
i \ J2

i 6= ∅. The proof for this case is similar to that for
the previous one.

Concluding, E2 ` Ci = Di for each i ∈ I. This means that E2 ` pan = qan, and
we are done.

3.2. Adding parallel composition

Our goal in this section is to axiomatize stateless bisimilarity over the full
Linda language studied in this paper. Consider the signature Σ3

P , an extension
of ΣP with the binary left merge operation T , which stems from [6], defined
by the rules:

(x, d)→ (x′, d′)

(x T y, d)→ (x′ ‖ y, d′)
(x, d) ↓ (y, d) ↓

(x T y, d) ↓

As is well known (see, e.g., [23]), the left merge operation is necessary in order
to obtain finite equational axiomatizations of bisimilarity in process algebras.

Consider the axiom system E3 which is E2 enriched with the following equa-
tions.

x ‖ y = x T y + y T x (e12)
(x+ y) T z = (x T z) + (y T z) (e13)

(a(u);x) T y = a(u); (x ‖ y) for all a ∈ {ask,nask, tell, get} and u ∈ U (e14)
ε T (x+ y) = ε T x+ ε T y (e15)
ε T (a(u); y) = δ for all a ∈ {ask,nask, tell, get} and u ∈ U (e16)

ε T ε = ε (e17)
ε T δ = δ (e18)
δ T x = δ (e19)

14

Theorem 3.6. E3 is sound and ground complete modulo stateless bisimilarity
over T (Σ3

P).

Proof. The soundness of E3 modulo stateless bisimilarity can be shown following
standard lines. The ground completeness of E3 modulo stateless bisimilarity
can be reduced to that of E2 over T (Σ2

P). Indeed, by induction on the size of
terms, one can show that the equations (e12−e19) can be used to eliminate each
occurrence of ‖ and T from terms.

4. Further related work

In addition to the related work that we mentioned in Section 1, we now
compare our work with the one presented in the paper [10].

In [10], Busi, Gorrieri and Zavattaro provided a process algebraic treatment
of Linda coordination primitives, studying an adequate SOS operational se-
mantics as well as an observational semantics based on the notion of barbed
bisimulation congruence, which stems from [22]. They studied a hierarchy of
eight languages and barbed bisimulation congruence for each of them. The least
expressive language, called L, is essentially Milner’s CCS [21] with asynchronous
communication; it includes action prefixing operators corresponding to the get
and tell actions in this paper, and the induced barbed bisimulation congruence
for it is strong bisimilarity—a result that is akin to Theorem 3.4 in this paper.

The most expressive language considered in [10] is called LINPA and has
all the communication primitives, including binary conditional input and read
operations. For example, a conditional read of the form rdp(u)?p q behaves like
p in the context of a tuple space that has an occurrence of the tuple u and like q
otherwise. Since, according to the operational semantics given in [10], checking
for the presence or the absence of the tuple u requires a ‘synchronization between
the process and the tuple space’, which results in an internal step of the system as
a whole, the typical law given in the above-mentioned reference for a conditional
read is

rdp(u)?p p = τ.p,

where τ is the internal action that results from handshake synchronizations as
in CCS. This behaviour is reminiscent of that of a term of the form (ask(u) +
nask(u)); p in our setting.

The focus of [10] is in providing alternative, context-independent characteri-
zations of barbed bisimulation congruences for the languages studied there. For
each of the languages, Busi, Gorrieri and Zavattaro provide typical equations,
such as the one given above for the conditional read operation. However, the
study of complete axiomatizations for the barbed bisimulation congruences over
L and its extensions is left as future work in [10]. In this paper we consider se-
quential composition rather than action prefixing, but, to our mind, this is a
minor point of difference between our work and the one in that reference.

15

5. Conclusions

In this paper, we have presented a sound and ground-complete axiomatiza-
tion for stateless bisimilarity over the collection of Linda process terms. The
axiom system is finite if the tuple names mentioned in the axioms are taken to
be variables ranging over tuples. In fact, as can be shown using the technique
presented in [16], the axiom systems E1 and E2 for the two fragments of the
sequential sub-language of Linda we consider in this paper are ω-complete as
well as complete for stateless bisimilarity. (We refer the interested reader to [1]
for information on (ω-)complete axiom systems and the connections between
completeness and ω-completeness.)

The axiom systems we present in this paper may form the core of axiom sys-
tems for coarser notions of equivalence over Linda. In particular, an interesting
direction for future research is the development of a complete axiomatization for
the notion of behavioural equivalence over Linda studied in [9]. It would also be
natural to study axiomatizations of congruences over Linda that, in some suit-
able sense, abstract away from the internal evolution of process terms, as well
as axiomatizations of extensions of the language with ‘local tuples/names’ and
finite-state recursive definitions. Last, but not least, we believe that it would be
worthwhile to study axiomatizations of congruence relations over fragments of a
modern coordination language like Reo. These are all very challenging research
topics that we leave for future work.

Acknowledgments. We thank two anonymous reviewers for their comments and
criticisms, which led to several improvements on our original submission.

References

[1] L. Aceto, W. Fokkink, A. Ingólfsdóttir, and B. Luttik. Finite equational
bases in process algebra: Results and open questions. In Processes, Terms
and Cycles, volume 3838 of Lecture Notes in Computer Science, pages 338–
367. Springer, 2005.

[2] F. Arbab. Reo: A channel-based coordination model for component com-
position. Mathematical Structures in Computer Science, 14(3):1–38, 2004.

[3] J. C. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational
Theories of Communicating Processes, volume 50 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2010.

[4] J. C. M. Baeten. Embedding untimed into timed process algebra: the case
for explicit termination. Mathematical Structures in Computer Science,
13(4):589–618, 2003.

[5] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,
and J. Sifakis. Rigorous component-based system design using the BIP
framework. IEEE Software, 28(3):41–48, 2011.

16

[6] J. A. Bergstra and J. W. Klop. Fixedpoint semantics in process algebra.
Technical Report IW 206/82, Center for Mathematics, Amsterdam, The
Netherlands, 1982.

[7] S. Bliudze and J. Sifakis. The algebra of connectors - structuring interaction
in BIP. IEEE Trans. Computers, 57(10):1315–1330, 2008.

[8] V. Bos and J. J. Kleijn. Redesign of a systems engineering language —
formalisation of χ. Formal Aspects of Computing, 15(4):370–389, Dec. 2003.

[9] A. Brogi and J.-M. Jacquet. On the expressiveness of Linda-like concur-
rent languages. In I. Castellani and C. Palamidessi, editors, Proceedings
of the 5th International Workshop on Expressiveness in Concurrency (EX-
PRESS’98), volume 16 of Electronic Notes in Theoretical Computer Science
(ENTCS). Elsevier Science, Dordrecht, The Netherlands, 1998.

[10] N. Busi, R. Gorrieri, and G. Zavattaro. A process algebraic view of Linda
coordination primitives. Theoretical Computer Science, 192:167–199, 1998.

[11] N. Carriero and D. Gelernter. Linda in context. Communications of the
ACM, 32(4):444–458, 1989.

[12] P. J. Cuijpers and M. A. Reniers. Hybrid process algebra. Journal of Logic
and Algebraic Programming, 62(2):191–245, 2005.

[13] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theo-
retical Computer Science, 34:83–133, 1984.

[14] R. De Nicola and R. Pugliese. Linda-based applicative and imperative
process algebras. Theoretical Computer Science, 238(1–2):389–437, 2000.

[15] D. Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[16] J. F. Groote. A new strategy for proving ω-completeness applied to process
algebra. In J. C. M. Baeten and J. W. Klop, editors, CONCUR ’90, Theo-
ries of Concurrency: Unification and Extension, Amsterdam, The Nether-
lands, August 27–30, 1990, Proceedings, volume 458 of Lecture Notes in
Computer Science, pages 314–331. Springer, 1990.

[17] J. F. Groote and A. Ponse. Process algebra with guards: Combining Hoare
logic with process algebra. Formal Aspects of Computing, 6(2):115–164,
1994.

[18] M. Hennessy and A. Ingólfsdóttir. Communicating processes with value-
passing and assignments. Formal Aspects of Computing, 5(5):432–466,
1993.

[19] M. Hennessy and A. Ingólfsdóttir. A theory of communicating processes
with value passing. Information and Computation, 107(2):202–236, 1993.

17

[20] M. Hennessy, H. Lin, and J. Rathke. Unique fixpoint induction for message-
passing process calculi. Science of Computer Programming, 41(3):241–275,
2001.

[21] A. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[22] A. R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, edi-
tor, Proceedings of 19th International Colloquium on Automata, Languages
and Programming (ICALP’92), volume 623 of Lecture Notes in Computer
Science, pages 85–695. Springer-Verlag, Berlin, Germany, 1992.

[23] F. Moller. The importance of the left merge operator in process algebras. In
M. Paterson, editor, Automata, Languages and Programming, 17th Inter-
national Colloquium, ICALP90, Warwick University, England, July 16–20,
1990, Proceedings, volume 443 of Lecture Notes in Computer Science, pages
752–764. Springer, 1990.

[24] M. R. Mousavi, M. A. Reniers, and J. F. Groote. Notions of bisimulation
and congruence formats for SOS with data. Information and Computation,
200(1):107–147, 2005.

[25] D. M. Park. Concurrency and automata on infinite sequences. In Proceed-
ings of the 5th GI Conference, volume 104 of Lecture Notes in Computer
Science, pages 167–183. Springer-Verlag, 1981.

[26] J. L. M. Vrancken. The algebra of communicating processes with empty
process. Theoretical Computer Science, 177(2):287–328, 1997.

18

