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Abstract. Decompositional reasoning aims at automatically decompos-
ing a global property of a composite system into local properties of (pos-
sibly unknown) components. In concurrency theory, decompositional rea-
soning techniques date back to the seminal work of Larsen and Liu in the
late 1980s and early 1990s. However, we are not aware of any such de-
composition technique that applies to reasoning about the “past”. In this
paper, we address this problem and present a decomposition technique
for Hennessy-Milner logic with past and its extension with recursively de-
fined formulae. As a language for processes, we use a subset of Milner’s
CCS with parallel composition, non-deterministic choice, action prefix-
ing and the inaction constant. We focus on developing decompositional
reasoning techniques for parallel contexts in that language.

1 Introduction

State-space explosion is a major obstacle in model checking logical properties.
One approach to combat this problem is compositional reasoning, where proper-
ties of a system as a whole are deduced in a principled fashion from properties of
its components. The study of compositional proof systems for various temporal
and modal logics has attracted considerable attention in the concurrency-theory
literature and several compositional proof systems have been proposed for such
logics over (fragments of) process calculi. (See, e.g., [3, 23, 24, 27].) A related
line of research is the one devoted to (de)compositional model checking [2, 9,
15, 20, 28]. Decompositional reasoning aims at automatically decomposing the
global property to be model checked into local properties of (possibly unknown)
components—a technique that is often called quotienting. In the context of pro-
cess algebras, as the language for describing reactive systems, and (extensions
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of) Hennessy-Milner logic (HML), as the logical specification formalism for de-
scribing their properties, decompositional reasoning techniques date back to the
seminal work of Larsen and Liu in the 1980’s and early 1990’s [18, 20], which
is further developed in, e.g., [4, 8, 13]. However, we are not aware of any such
decomposition technique that applies to reasoning about the “past”. This is
particularly interesting in the light of recent developments concerning reversible
processes [22] and knowledge representation (epistemic aspects) inside process
algebra [6, 10], all of which involve some notion of specification and reasoning
about the past. Moreover, a significant body of evidence indicates that being
able to reason about the past is useful in program verification [12, 17, 21].

In this paper, we address the problem of developing a decomposition tech-
nique for Hennessy-Milner logic with past and for its extension with recursively
defined formulae. As the language for describing processes, in order to highlight
the main ideas and technical tools in our approach, we use a subset of CCS with
parallel composition, non-deterministic choice, action prefixing and the inaction
constant. As the work presented in this paper shows, the development of a theory
of decompositional reasoning in a setting with past modalities involves subtleties
and design decisions that do not arise in previous work on HML and Kozen’s
µ-calculus [14].

The rest of this paper is structured as follows. Section 2 introduces prelimi-
nary definitions and the extension of Hennessy-Milner logic with past. Section 3
discusses how parallel computations are decomposed into their components. Sec-
tion 4 presents the decompositional reasoning technique and the main theorem
of the paper. Section 5 extends the theory to recursively defined formulae, and
Section 6 discusses related work and possible extensions of our results.

2 Preliminaries

Definition 1 (Labelled transition system). A labelled transition system
(LTS) is a triple 〈P,A, −→ 〉 where

– P is a set of process names,
– A is a finite set of action names, not including a silent action τ (we write Aτ

for A ∪ {τ}), and
– −→ ⊆ P ×Aτ ×P is the transition relation; we call its elements transitions

and usually write p
α−→ p′ to mean that (p, α, p′) ∈−→.

We let p, q, . . . range over P , a, b, . . . over A and α, β, . . . over Aτ .

Definition 2 (Sequences and computations). For any set S, we let S∗ be
the set of finite sequences of elements from S. Concatenation of sequences is
represented by juxtaposition. λ denotes the empty sequence and |w| stands for
the length of a sequence w.

Given an LTS T = 〈P,A, −→ 〉, we define a path from p0 to be a sequence

of transitions p0
α0−→ p1, p1

α1−→ p2, . . . , pn−1
αn−1−→ pn and usually write this as

p0
α0−→ p1

α1−→ p2
α2−→ · · · αn−1−→ pn.
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We use π, µ, ... to range over paths. A computation from p is a pair (p, π)
where π is a path from p and we use ρ, ρ′, . . . to range over computations.
CT (p), or simply C(p) when the LTS T is clear from the context, is the set of
computations from p and CT is the set of all computations in T .

For a computation ρ = (p0, π) where π = p0
α0−→ p1

α1−→ p2
α2−→ · · · αn−1−→ pn

we define first(ρ) = first(π) = p0, last(ρ) = last(π) = pn, trace(ρ) = (α0 . . . αn−1)
∈ A∗τ and |ρ| = |π| = n. We refer to the elements of A∗τ as traces.

Concatenation of computations ρ and ρ′ is denoted by their juxtaposition
ρρ′ and is defined iff last(ρ) = first(ρ′). When last(ρ) = p we write ρ(p α−→ q) as

a shorthand for the slightly longer ρ(p, p α−→ q). We also use ρ
α−→ ρ′ to denote

that there exists a computation ρ′′ = (p, p α−→ p′), for some processes p and p′,
such that ρ′ = ρρ′′.

Definition 3 (Hennessy-Milner logic with past). Let T = 〈P,A,→〉 be an
LTS. The set HML�(A), or simply HML�, of Hennessy-Milner logic formulae
with past is defined by the following grammar, where α ∈ Aτ .

ϕ,ψ ::= > | ϕ ∧ ψ | ¬ϕ | 〈α〉ϕ | 〈←α〉ϕ.

We define the satisfaction relation �⊆ CT × HML� as the least relation that
satisfies the following clauses:

– ρ � > for all ρ ∈ CT ,
– ρ � ϕ ∧ ψ iff ρ � ϕ and ρ � ψ,
– ρ � ¬ϕ iff not ρ � ϕ,
– ρ � 〈α〉ϕ iff ρ

α−→ ρ′ and ρ′ � ϕ for some ρ′ ∈ CT , and

– ρ � 〈←α〉ϕ iff ρ′
α−→ ρ and ρ′ � ϕ for some ρ′ ∈ CT .

For a process p ∈ P we take p � ϕ to mean (p, λ) � ϕ.

We make use of some standard short-hands for Hennessy-Milner-type logics, such
as, ⊥ = ¬>, ϕ∨ψ = ¬(¬ϕ∧¬ψ), [α]ϕ = ¬〈α〉(¬ϕ) and [←α]ϕ = ¬〈←α〉(¬ϕ).
For a finite set of actions B, we also use the following notations.

〈B〉ϕ =
∨
α∈B
〈α〉ϕ 〈←B〉ϕ =

∨
α∈B
〈←α〉ϕ

[B]ϕ =
∧
α∈B

[α]ϕ [←B]ϕ =
∧
α∈B

[←α]ϕ

It is worth mentioning that the operators 〈·〉 and 〈←·〉 are not entirely symmet-
ric. The future is non-deterministic; the past is, however, always deterministic.
This is by design, and we could have chosen to model the past as nondeterminis-
tic as well, i.e., to take a possibilistic view where we would consider all possible
histories. Overall, the deterministic view is more appropriate for our purposes.
See, e.g., [17] for a clear discussion of possible approaches in modelling the past
and further references.
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3 Decomposing Computations

In this section, following [2, 15, 20], we aim at defining a notion of “formula
quotient with respect to a process in a parallel composition” for formulae in
HML�. In our setting, this goal translates into a theorem of the form ρ � ϕ iff
ρ1 � ϕ/ρ2, where ρ, ρ1, ρ2 are computations such that ρ is a computation of a
“parallel process” that is, in some sense, the “parallel composition” of ρ1 and
ρ2.

In the standard setting, definitions of “formula quotients” are based on local
information that can be gleaned from the operational semantics of the chosen
notion of parallel composition operator. In the case of computations, however,
such local information does not suffice. A computation arising from the evolution
of two processes run in parallel has the form (p ‖ q, π), where p ‖ q is a syntactic
representation of the initial state and π is the path leading up to the current
state. The path π however may involve contributions from both of the parallel
components. Separating the contributions of the components for the purposes of
decompositional model checking requires us to unzip these paths into separate
paths that might have been observed by considering only one argument of the
composition. This means that we have to find two paths πp and πq such that
(p, πp) and (q, πq) are, in some sense, independent computations that run in
parallel will yield (p ‖ q, π).

3.1 CCS Computations and Their Decomposition

For this study, in order to highlight the main ideas and technical tools in our
approach, we restrict ourselves to a subset of CCS, namely CCS without renam-
ing, restriction or recursion. (We discuss possible extensions of our results in
Section 6.) Processes are thus defined by the following grammar.

p, q ::= 0 | α.p | p+ q | p ‖ q

and their operational semantics is given by the following rules.

α.p
α−→ p

p
α−→ p′

p+ q
a−→ p′

q
α−→ q′

p+ q
a−→ q′

p
α−→ p′

p ‖ q α−→ p′ ‖ q
q

α−→ q′

p ‖ q α−→ p ‖ q′
p

a−→ p′ q
ā−→ q′

p ‖ q τ−→ p′ ‖ q′

We write p α−→ q to denote that this transition is provable by these rules. We
assume also that ·̄ : A → A is a bijective function on action names such that
¯̄a = a.

The decomposition of a computation resulting from the evolution of two
parallel components must retain the information about the order of steps in
the interleaved computation. We do so by modelling the decomposition using
stuttering computations. These are computations that are not only sequences of
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transition triplets, but may also involve pseudo-steps labelled with 99K. Intu-
itively, p 99K p means that process p has remained idle in the last transition
performed by a parallel process having p as one of its parallel components. We
denote the set of stuttering computations with C∗T or simply C∗. For example,
the computation

(a.0 ‖ b.0, a.0 ‖ b.0 a−→ 0 ‖ b.0 b−→ 0 ‖ 0)

is decomposed into the stuttering computations

(a.0, a.0 a−→ 0 99K 0) and (b.0, b.0 99K b.0 b−→ 0).

However, the decomposition of a parallel computation is not in general unique,
as there may be several possibilities stemming from different synchronisation
patterns. For example consider a computation with path (a.0 + b.0) ‖ (ā.0 + b̄.0)
τ−→ 0 ‖ 0. From this computation it is not possible to distinguish if the transition

labelled with τ was the result of communication of the a and ā actions, or of
the b and b̄ actions. We thus consider all possibilities simultaneously, i.e., a
decomposition of a computation is actually a set of pairs of components.

The following function over paths defines the decomposition of a computa-
tion.

D(λ) = {(λ, λ)}
D(π(p ‖ q 99K p ‖ q)) = {(µ1(p 99K p), µ2(q 99K q)) | (µ1, µ2) ∈ D(π)}

D(π(p ‖ q α−→ p′ ‖ q′)) =



{(µ1(p α−→ p′), µ2(q 99K q))
| (µ1, µ2) ∈ D(π)} if q ≡ q′

{(µ1(p 99K p), µ2(q α−→ q′))
| (µ1, µ2) ∈ D(π′)} if p ≡ p′

{(µ1(p a−→ p′), µ2(q ā−→ q′))
| (µ1, µ2) ∈ D(π), a ∈ A,

p
a−→ p′, q

ā−→ q′} otherwise and α = τ .

Note that if (µ1, µ2) is a decomposition of a computation π, then the three
computations have the same length. Furthermore last(π) = last(µ1) ‖ last(µ2).

Another notable property of path decomposition is that its inverse is unique,
i.e., a pair (µ1, µ2) can only be the decomposition of a single path.

Lemma 1. Let π1 be a path of a parallel computation and (µ1, µ2) ∈ D(π1). If
π2 is a path such that (µ1, µ2) ∈ D(π2) also, then π1 = π2.

We now aim at defining the quotient of an HML�-formula ϕ with respect to a
computation (q, µ2), written ϕ/(q, µ2), in such a way that a property of the form

(p ‖ q, π) � ϕ ⇔ (p, µ1) � ϕ/(q, µ2)
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holds when (µ1, µ2) ∈ D(π). However, since we are dealing with sets of decom-
positions, we need to quantify over these sets. It turns out that a natural way
that also gives a strong result is the following. Given that a composed compu-
tation satisfies a formula, we prove in Section 4 that one component of every
decomposition satisfies a formula quotiented with the other component:

(p ‖ q, π) � ϕ ⇒ ∀(µ1, µ2) ∈ D(π) : (p, µ1) � ϕ/(q, µ2).

On the other hand, to show the implication from right to left, we need only one
witness of a decomposition that satisfies a quotiented formula to deduce that
the composed computation satisfies the original one:

∃(µ1, µ2) ∈ D(π) : (p, µ1) � ϕ/(q, µ2) ⇒ (p ‖ q, π) � ϕ.

In order to define the quotienting transformation, we need a logic that allows us
to describe properties of computations involving explicit pseudo-steps. To this
end, we now extend HML� with two additional modal operators.

Definition 4 (Stuttering Hennessy-Milner logic with past). Consider
an LTS T = 〈P,A,→〉. The set HML∗�(A), or simply HML∗�, of stuttering
Hennessy-Milner logic formulae with past is defined by the grammar

ϕ,ψ ::= > | ϕ ∧ ψ | ¬ϕ | 〈α〉ϕ | 〈←α〉ϕ | 〈99K〉ϕ | 〈L99〉ϕ

where α ∈ Aτ . The satisfaction relation �∗⊆ C∗T ×HML∗� is defined in the same
manner as for Hennessy-Milner logic with past, by extending Definition 3 with
the following two items.

– ρ �∗ 〈99K〉ϕ iff ρ(p 99K p) �∗ ϕ where p = last(ρ).
– ρ �∗ 〈L99〉ϕ iff ρ′ �∗ ϕ where ρ = ρ′(p 99K p) for some p.

Similarly, �∗ ∈ P ×HML∗� is defined by p �∗ ϕ if and only if (p, λ) �∗ ϕ.

The satisfaction relations �∗ and � coincide over CT ×HML�.

Why are the stutters necessary? One may ask why we need to extend both com-
putations and the logic to include the notion of pseudo-steps. The reason for
doing so is to capture information about the interleaving order in component
computations. This in turn is necessary because the original logic can differen-
tiate between different interleavings of parallel processes.

For an example, consider the computation (a.0 ‖ b.0, π) where

π = a.0 ‖ b.0 a−→ 0 ‖ b.0 b−→ 0 ‖ 0.

Clearly this computation does not satisfy the formula 〈←a〉>.
Another interleaving of the same parallel composition is the computation

(a.0 ‖ b.0, π′) where

π′ = a.0 ‖ b.0 b−→ a.0 ‖ 0 a−→ 0 ‖ 0.
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This computation, on the other hand, does satisfy 〈←a〉>. Since the logic can
distinguish between different interleaving orders of a parallel computation, it is
vital to maintain information about the interleaving order in our decomposition.
If the decomposition of the above computations only considered the actions
contributed by each component, this information would be lost and the two
paths would have the same decomposition. As a result, we could not reasonably
expect to test if they satisfy the formula 〈←a〉> in a decompositional manner.

4 Decompositional Reasoning

We now define the quotienting construction over formulae structurally. The com-
plete quotienting transformation is given in Table 1, where we assume that
p′ = last(ρ). Below we limit ourselves to discussing the quotienting transfor-
mation for formulae of the form 〈←α〉ϕ.

To define the transformation for formulae of that form, we look at several
cases separately. First we consider the case when ρ has the empty path. In this
case it is obvious that no backward step is possible.

(〈←α〉ϕ)/(p, λ) = ⊥

The second case to consider is when ρ ends with a pseudo-transition. In this case
the only possibility is that the other component (the one we are testing) is able
to perform the backward transition.

(〈←α〉ϕ)/ρ′(p′ 99K p′) = 〈←α〉(ϕ/ρ′)

The third case applies when ρ does indeed end with the transition we look for.
In this case the other component must end with a matching pseudo-transition.

(〈←α〉ϕ)/ρ′(p′′ α−→ p′) = 〈L99〉(ϕ/ρ′) (1)

The only remaining case to consider is when ρ ends with a transition different
from the one we look for. We split this case further and consider again separately
the cases when α ∈ A and when α = τ . The former case is simple: if ρ indicates
that the last transition has a label other than the one specified in the diamond
operator, the composite computation cannot satisfy 〈←a〉ϕ because the other
component must have performed a pseudo-step.

(〈←a〉ϕ)/ρ′(p′′
β−→ p′) = ⊥ where a 6= β

If however the diamond operator mentions a τ transition, then we must look for
a transition in the other component that can synchronise with the last one of ρ.
Note that this case does not include computations ending with a τ transition,
as that case is covered by Equation (1).

(〈←τ〉ϕ)/ρ′(p′′ b−→ p′) = 〈← b̄〉(ϕ/ρ′)
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>/ρ = >
(ϕ1 ∧ ϕ2)/ρ = ϕ1/ρ ∧ ϕ2/ρ

(¬ϕ)/ρ = ¬(ϕ/ρ)

(〈a〉ϕ)/ρ = 〈a〉
`
ϕ/ρ(p′ 99K p′)

´
∨

0@ _
ρ′:ρ

a→ ρ′

〈99K〉(ϕ/ρ′)

1A

(〈τ〉ϕ)/ρ = 〈τ〉
`
ϕ/ρ(p′ 99K p′)

´
∨

0@ _
ρ′:ρ

τ→ ρ′

〈99K〉(ϕ/ρ′)

1A
∨

0@ _
ρ′,a:ρ

a→ ρ′

〈ā〉(ϕ/ρ′)

1A
(〈←α〉ϕ)/(p, λ) = ⊥

(〈←α〉ϕ)/ρ′(p′ 99K p′) = 〈←α〉(ϕ/ρ′)

(〈←α〉ϕ)/ρ′(p′′
α−→ p′) = 〈L99〉(ϕ/ρ′)

(〈←a〉ϕ)/ρ′(p′′
β−→ p′) = ⊥ where a 6= β

(〈←τ〉ϕ)/ρ′(p′′
b−→ p′) = 〈← b̄〉(ϕ/ρ′)

(〈99K〉ϕ)/ρ = 〈99K〉
`
ϕ/ρ(p′ 99K p′)

´
(〈L99〉ϕ)/ρ =

(
〈L99〉(ϕ/ρ′) if ρ = ρ′(p′ 99K p′)

⊥ otherwise

Table 1. Quotienting transformations of formulae in HML∗�

This covers all possible cases for 〈←α〉ϕ/ρ.
We are now ready to prove the main theorem in this section, to the effect

that the quotienting of a formula ϕ with respect to a computation ρ is properly
defined.

Theorem 1. For CCS processes p, q and a computation (p ‖ q, π) ∈ C(p ‖ q)
and a formula ϕ ∈ HML∗� we have

(p ‖ q, π) �∗ ϕ ⇒ ∀(µ1, µ2) ∈ D(π) : (p, µ1) �∗ ϕ/(q, µ2) (2)

and, conversely,

(p ‖ q, π) �∗ ϕ ⇐ ∃(µ1, µ2) ∈ D(π) : (p, µ1) �∗ ϕ/(q, µ2). (3)

Theorem 1 uses the existential quantifier in the right-to-left direction. This makes
it easy to show that a computation of a process of the form p ‖ q satisfies a for-
mula, given only one witness of a decomposition with one component satisfying
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the corresponding quotient formula. Note, however, that the set of decomposi-
tions of any given process is never empty, i.e., every parallel computation has a
decomposition. This allows us to write the above theorem in a more symmetric
form.

Corollary 1. For CCS processes p, q, a parallel computation (p ‖ q, π) and a
formula ϕ ∈ HML∗� we have

(p ‖ q, π) �∗ ϕ ⇔ ∀(µ1, µ2) ∈ D(π) : (p, µ1) �∗ ϕ/(q, µ2). (4)

5 Adding recursion to HML∗
�

In this section, we extend the results from Section 4 to a version of the logic
HML∗� that includes (formula) variables and a facility for the recursive definition
of formulae. Following, e.g., [19], the intended meaning of a formula variable is
specified by means of a declaration, i.e., a mapping from variables to formulae,
which may themselves contain occurrences of variables. A declaration is nothing
but a system of equations over the set of formula variables.

By using the extension of the logic HML∗� discussed in this section, we can
reason about properties of processes and computations that go beyond one step
of lookahead or look-back. For example we can phrase the question “Has the
action α ever happened in the past?” as the least model of a suitable recursive
logical property.

Definition 5. Let A be a finite set of actions and let X be a finite set of iden-
tifiers. The set HML∗�,X (A), or simply HML∗�,X , is defined by the grammar

ϕ,ψ ::= > | ϕ ∧ ψ | ¬ϕ | 〈α〉ϕ | 〈←α〉ϕ | 〈99K〉ϕ | 〈L99〉ϕ | X

where X ∈ X .

Definition 6. Let X be a finite set of variables. Then a declaration over X is
a function D : X → HML∗�,X , assigning a formula to each variable contained
in X , with the restriction that each occurrence of a variable in a formula in the
range of D is positive, i.e., any variable is within the scope of an even number
of negations.

When reasoning about recursive formulae, it is technically convenient to define
their meaning (i.e., the set of computations that satisfy them) denotationally.
For the sake of clarity, we rephrase Definition 4 in a denotational setting. As it
is customary, the following definition makes use of a notion of environment to
give meaning to formula variables. An environment is a function σ : X → P(C∗).
Intuitively, an environment assigns to each variable the set of computations that
are assumed to satisfy it. We write EX for the set of environments over the set
of (formula) variables X . It is well-known that EX is a complete lattice when
environments are ordered pointwise using set inclusion.
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Definition 7 (Denotational semantics of HML∗�,X ). Let T = 〈P,A,→〉
be an LTS. Let ϕ be a HML∗�,X formula and let σ be an environment. The
denotation of ϕ with respect to σ, written [[ϕ]]σ, is defined structurally as follows:

[[>]]σ = C∗T
[[ϕ ∧ ψ]]σ = [[ϕ]]σ ∩ [[ψ]]σ

[[¬ϕ]]σ = C∗T \ [[ϕ]]σ

[[〈α〉ϕ]]σ = 〈·α·〉[[ϕ]]σ

[[〈←α〉ϕ]]σ = 〈· ←α·〉[[ϕ]]σ

[[〈99K〉ϕ]]σ = 〈· 99K ·〉[[ϕ]]σ

[[〈L99〉ϕ]]σ = 〈· L99 ·〉[[ϕ]]σ and

[[X]]σ = σ(X),

where the operators 〈·α·〉, 〈· ←α·〉, 〈· 99K ·〉, 〈· L99 ·〉 : P(C∗T ) → P(C∗T ) are de-
fined thus:

〈·α·〉S = {ρ ∈ C∗T | ∃ρ′ ∈ S : ρ α−→ ρ′}
〈· ←α·〉S = {ρ ∈ C∗T | ∃ρ′ ∈ S : ρ′ α−→ ρ}
〈· 99K ·〉S = {ρ ∈ C∗T | ∃ρ′ ∈ S : ρ 99K ρ′} and
〈· L99 ·〉S = {ρ ∈ C∗T | ∃ρ′ ∈ S : ρ′ 99K ρ}.

The satisfaction relation �σ⊆ C∗T ×HML∗�,X is defined by

ρ �σ ϕ ⇔ ρ ∈ [[ϕ]]σ.

It is not hard to see that, for formulae in HML∗�, the denotational semantics
is independent of the chosen environment and is equivalent to the satisfaction
relation offered in Definition 4 in the sense made precise by the following lemma.

Lemma 2. Let ϕ ∈ HML∗� and ρ ∈ C∗T . Then ρ �∗ ϕ if and only if ρ ∈ [[ϕ]]σ,
for any environment σ.

The semantics of a declaration D is given by a model for it, viz. by an envi-
ronment σ such that σ(X) = [[D(X)]]σ, for each variable X ∈ X . For every
declaration there may be a variety of models. However, we are usually interested
in either the greatest or least models, since they correspond to safety and live-
ness properties, respectively. In the light of the positivity restrictions we have
placed on the formulae in the range of declarations, each declaration always has
least and largest models by Tarski’s fixed-point theorem [25]. See, e.g., [1, 19] for
details and textbook presentations.

5.1 Decomposition of formulae in HML∗�,X

We now turn to the transformation of formulae, so that we can extend Theorem 1
to include formulae from HML∗�,X . Our developments in this section are inspired
by [13], but the technical details are rather different and more involved.
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In Section 4 we defined how a formula ϕ is quotiented with respect to a com-
putation ρ. In particular, the quotiented formula >/ρ is > for any computation
ρ. This works well in the non-recursive setting, but there is a hidden assump-
tion that we must expose before tackling recursive formulae. In Theorem 1, the
satisfaction relations are actually based on two different transition systems. By
way of example, consider the expression on the right-hand side of the theorem,
namely

∀(µ1, µ2) ∈ D(π) : (p, µ1) � ϕ/(q, µ2).

When establishing this statement, we have implicitly assumed that we are work-
ing within the transition system of computations from p that are compatible with
the computations from q—i.e., above, µ1 really is a path that is the counterpart
of µ2 in a decomposition of the path π.

Intuitively, the set of computations that satisfy a quotient formula ϕ/ρ is the
set of computations that are compatible with ρ and whose composition with ρ
satisfies the formula ϕ. However, defining >/ρ = > does not match this intuition,
if we take the denotational viewpoint of the formula > on the right-hand side
representing all possible computations. In fact, we expect >/ρ to represent only
those computations that are compatible with ρ. We formalize the notion of pairs
of compatible computations and refine our definition of >/ρ.

Definition 8. Paths µ1 and µ2 are compatible with each other if and only if
they have the same length and one of the following holds if they are non-empty.

– If µ1 = µ′1(p′′ τ−→ p′) then µ2 = µ′2(q′ 99K q′) and µ′1 and µ′2 are compatible.

– If µ1 = µ′1(p′′ a−→ p′) then either µ2 = µ′2(q′′ ā−→ q′) or µ2 = µ′2(q′ 99K q′);
and in both cases µ′1 and µ′2 are compatible.

– If µ1 = µ′1(p′′ 99K p′) then either µ2 = µ′2(q′′ α−→ q′), for some action α, or
µ2 = µ′2(q′ 99K q′); and in both cases µ′1 and µ′2 are compatible.

We say that two computations are compatible with each other if their paths are
compatible.

We now revise our transformation of the formula >. We want >/ρ to be a formula
that is satisfied by the set of all computations that are compatible with ρ. It
turns out this can be expressed in HML∗� as described below.

Definition 9. Let π be a path of transitions in the LTS T = 〈P,A,→〉. Then
the HML∗� formula >π is defined as follows.

>λ = [←Aτ ]⊥ ∧ [L99]⊥
>
π′(p

τ−→ p′)
= 〈L99〉>π′

>
π′(p

a−→ p′)
= 〈← ā〉>π′ ∨ 〈L99〉>π′

>π′(p 99K p′) = 〈←Aτ 〉>π′ ∨ 〈L99〉>π′

Our reader may notice that this is a rewording of Definition 8, and it is easy
to see that the computations satisfying >π are exactly the computations which
have paths compatible with π. Now the revised transformation of > is

>/(p, π) = >π, (5)
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which matches our intuition. For the constructs in the logic HML∗�, we can reuse
the transformation defined in Section 4. We therefore limit ourselves to highlight-
ing how to quotient formulae of the form X. However, instead of decomposing
formulae of this form, we treat the quotient X/ρ as a variable, i.e., we use the set
X ×C as our set of variables. The intuitive idea of such variables is the following,

(p, µ1) �σ′ X/(q, µ2) ⇔ (p ‖ q, π) �σ X ⇔ (p ‖ q, π) ∈ σ(X)

where σ is an environment for a declaration D over the variables X , σ′ is an
environment for a declaration D′ over the variables X ×C, and (µ1, µ2) ∈ D(π).
We explain below the relation between D and D′ as well as the one between σ
and σ′.

Formally, the variables used in quotienting our logic are pairs (X, ρ) ∈ X ×C.
Formulae of the form X are simply rewritten as follows:

X/ρ = (X, ρ),

where the X/ρ on the left-hand side denotes the transformation (as in Section 4)
and the pair on the right-hand side is the variable in our adapted logic. When
there is no risk of ambiguity, we simply use the notation X/ρ to represent the
variable (X, ρ).

Transformation of declarations Generating the transformed declaration D′ from
a declaration D is done as follows:

D′(X/ρ) = D(X)/ρ. (6)

Note that the rewritten formula on the right-hand side may introduce more
variables which obtain their values in D′ in the same manner.

Transformation of environments The function Φ maps environments over X to
environments over X × C thus:

σ′(X/(q, µ2)) = Φ(σ)(X/(q, µ2))
= {(p, µ1) | (p ‖ q, π) ∈ σ(X) for some π with (µ1, µ2) ∈ D(π)}.

Our order of business now is to show that if σ is the least (respectively, largest)
model for a declaration D, then σ′ is the least (respectively, largest) model for D′
and vice versa. In particular, we show that there is a bijection relating models
of D and models of D′, based on the mapping Φ. First we define its inverse.
Consider the function Ψ , which maps an environment over X ×C to one over X .

Ψ(σ′)(X) = {(p ‖ q, π) | ∀(µ1, µ2) ∈ D(π) : (p, µ1) ∈ σ′(X/(q, µ2))}

It is not hard to see that Φ and Ψ are both monotonic.
We now use the model transformation functions Φ and Ψ to prove an extended

version of Theorem 1.
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Theorem 2. Let p, q be CCS processes, (p ‖ q, π) ∈ C∗(p ‖ q). For a formula
ϕ ∈ HML∗�,X and an environment σ, we have

(p ‖ q, π) �σ ϕ ⇔ ∀(µ1, µ2) ∈ D(π) : (p, µ1) �Φ(σ) ϕ/(q, µ2). (7)

Conversely, for an environment σ′,

(p ‖ q, π) �Ψ(σ′) ϕ ⇔ ∀(µ1, µ2) ∈ D(π) : (p, µ1) �σ′ ϕ/(q, µ2). (8)

We can now show that the functions Φ and Ψ are inverses of each other.

Lemma 3. Ψ ◦ Φ = idEX and Φ ◦ Ψ = idEX×C .

This means that Φ is a bijection between the collections of environments over
the variable spaces X and X × C, and Ψ is its inverse. The last theorem of this
section establishes soundness of the decompositional reasoning for HML∗�,X by
showing that Φ and Ψ preserve models of D and D′, respectively.

Theorem 3. Let D be a declaration over X , and let D′ be its companion dec-
laration over X × C defined by (6). If σ is a model for D, then Φ(σ) is a model
for D′. Moreover, if σ′ is a model for D′, then Ψ(σ′) is a model for D.

Theorem 3 allows us to use decompositional reasoning for HML∗�,X . Assume, for
example, that we want to find the least model for a declaration D. We start by
constructing the declaration D′ defined by (6). Next, we find the least model
σ′min of D′ using standard fixed-point computations. (See, e.g., [1] for a textbook
presentation.) We claim that Ψ(σ′min) is the least model of the declaration D.
Indeed, let σ be any model of D. Then, by the above theorem, Φ(σ) is a model
of D′ and thus σ′min ⊆ Φ(σ) holds, where ⊆ is lifted pointwise to environments.
Then the monotonicity of Ψ and Lemma 3 ensure that

Ψ(σ′min) ⊆ Ψ(Φ(σ)) = σ.

To conclude, note that Ψ(σ′min) is a model of D by the above theorem.

6 Extensions and further related work

In this paper, we have developed techniques that allow us to apply decomposi-
tional reasoning for history-based computations over CCS and Hennessy-Milner
logic with past modalities. Moreover, we extended the decomposition theorem
to a recursive extension of that logic. In the decomposition of computations that
is at the heart of our approach, we rely on some specific properties of CCS at
the syntactic level, namely to detect which rule of the parallel operator was ap-
plied. By tagging a transition with its proof [5, 7], or even just with the last rule
used in the proof, we could eliminate this restriction and extend our approach
to other languages involving parallel composition. Another possibility is to con-
struct a rule format that guarantees the properties we use at a more general
level, inspired by the work of [8].
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In this work we have only considered contexts built using parallel compo-
sition. However, decompositional results have been shown for the more general
setting of process contexts [20] and for rule formats [4, 8]. In that work, one con-
siders, for example, a unary context C[·] (a process term with a hole) and a
process p with which to instantiate the context. A property of the instantiated
context C[p] can then be transformed into an equivalent property of p, where the
transformation depends on C. As the state space explosion of model-checking
problems is often due to the use of the parallel construct, we consider our ap-
proach a useful first step towards a full decomposition result for more general
contexts. In general, the decomposition of computations will be more complex
for general contexts.

The initial motivation for this work was the application of epistemic logic
to behavioural models, following the lines of [6]. We would therefore like to
extend our results to logics that include epistemic operators, reasoning about the
knowledge of agents observing a running system. This work depends somewhat
on the results presented in Section 5.

As we already mentioned in the introduction, there is by now a substantial
body of work on temporal and modal logics with past operators. A small sample
is given by the papers [11, 16, 26]. Of particular relevance for our work in this
paper is the result in [16] to the effect that Hennessy-Milner logic with past
modalities can be translated into ordinary Hennessy-Milner logic. That result,
however, is only proved for the version of the logic without recursion and does
not directly yield a quotienting construction for the logics we consider in this
paper.
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A Proofs for Section 4

Proof of Lemma 1. We start by noting that π1 and π2 cannot differ in length,
as they are both equal in length to µ1 (and µ2). We apply induction on their
common length.

If both are empty, π1 = π2 = λ, then there is nothing to prove. Now assume
they are non-empty and that

π1 = π′1(p′1 ‖ q′1 R1 p1 ‖ q1)
π2 = π′2(p′2 ‖ q′2 R2 p2 ‖ q2)

where R1, R2 are relations of the form α−→ or 99K . The induction hypothesis
states that π′1 = π′2, which also means that p′1 = p′2 and q′1 = q′2. Furthermore,
p1 = p2 and q1 = q2. Thus we only need to show that the final steps coincide
also, i.e. that R1 = R2. The proof proceeds by case analysis on the last steps of
µ1 and µ2.

– If both µ1 and µ2 end with a pseudo-step, then we see from the definition
of D that both R1 and R2 must be pseudo-transitions.

– If only one of µ1 and µ2 ends with a pseudo-step, then the action of the
other one must be the same as the last action of both π and π′.

– If both µ1 and µ2 end with a proper transition, we note that by the definition
of D the actions must complement each other. Then the last step of both π
and π′ must thus be labelled with τ .

– If both µ1 and µ2 end with a proper transition, we note that by the definition
of D the actions must complement each other. Then the last step of both π
and π′ must thus be labelled with τ .

This covers all the cases and thus we have shown that R1 = R2, p1 = p2 and
q1 = q2. Coupled with the induction hypothesis, this means that π = π′. ut

Lemma 4. If p ‖ q α−→ p′ ‖ q′ where p 6≡ p′ and q 6≡ q′ then α = τ .

Proof of Lemma 4. Consider the proof tree for the transition p ‖ q α−→ p′ ‖ q′
and, in particular, the last rule used in the proof. This rule can be one of the
three rules for the parallel operator. The first two, where only one component
advances, are ruled out since then either p ≡ p′ or q ≡ q′ must hold. Therefore
the last rule used in the proof must be the communication rule, in which case
the label of the proved transition can only be τ . ut

Lemma 5. Let p, q be processes, (p ‖ q, π) ∈ C(p ‖ q) and (µ1, µ2) ∈ D(π).
(i) If (p ‖ q, π) α−→ (p ‖ q, π′) then there exists a pair (µ′1, µ

′
2) ∈ D(π′) such that

one of the following holds.

1. (p, µ1) α−→ (p, µ′1) and (q, µ2) 99K (q, µ′2),
2. (p, µ1) 99K (p, µ′1) and (q, µ2) α−→ (q, µ′2) or
3. α = τ , (p, µ1) a−→ (p, µ′1) and (q, µ2) ā−→ (q, µ′2) for some a ∈ A.
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(ii) Symmetrically,

1. If there exists a µ′1 s.t. (p, µ1) α−→ (p, µ′1) then there exists a π′ s.t. (p ‖
q, π) α−→ (p ‖ q, π′) and (µ′1, µ2(q′ 99K q′)) ∈ D(π′) where q′ = last(µ2).

2. If there exists a µ′2 s.t. (q, µ2) α−→ (q, µ′2) then there exists a π′ s.t. (p ‖
q, π) α−→ (p ‖ q, π′) and (µ1(p′ 99K p′), µ′2) ∈ D(π′) where p′ = last(µ1).

3. If there exist µ′1 and µ′2 s.t. (p, µ1) a−→ (p, µ′1) and (q, µ2) ā−→ (q, µ′2) for some
a ∈ A, then there exists π′ s.t. (p ‖ q, π) τ−→ (p ‖ q, π′) and (µ′1, µ

′
2) ∈ D(π′).

Proof of Lemma 5. (i) Assume that (p ‖ q, π) α−→ (p ‖ q, π′) and let (µ1, µ2) ∈
D(π). This means there exist processes p′, q′, p′′, q′′ with π′ = π(p′′ ‖ q′′ α−→ p′ ‖
q′), p′′ = last(µ1), q′′ = last(µ2). Since p′′ ‖ q′′ 6≡ p′ ‖ q′ we observe that p′′ ≡ p′

and q′′ ≡ q′ cannot hold simultaneously, so we consider the remaining cases.

1. p′′ 6≡ p′ and q′′ ≡ q′. In this case the transition p′′ ‖ q′ α−→ p′ ‖ q′ was proven
using the first rule for ‖. Its only premise must hold, namely p′′ α−→ p′. We
therefore let µ′1 = µ1(p′′ α−→ p′) and µ′2 = µ2(q′ 99K q′). From the inductive
definition of D it is easy to see that (µ′1, µ

′
2) ∈ D(π′).

2. p′′ ≡ p′ and q′′ 6≡ q′. This case is entirely symmetric to the previous one
where the proof is based on the second rule for ‖.

3. p′′ 6≡ p′ and q′′ 6≡ q′. Here the proof of the transition p′′ ‖ q′′ α−→ p′ ‖ q′
must be based on the third rule for ‖, namely the communication rule and
α = τ , as seen by Lemma 4. By the premises of this rule there exists an
a ∈ A such that p′′ a−→ p′ and q′′

ā−→ q′. We simply let µ′1 = µ1(p′′ a−→ p′)
and µ′2 = µ2(q′′ ā−→ q′). Again it is clear from the definition of D that
(µ′1, µ

′
2) ∈ D(π′).

(ii) The construction of π′ in all cases is straightforward and unique (cfr.
Lemma 1). The rest is simple to check with the definition of D. ut

Lemma 6. Let (p ‖ q, π) ∈ C(p ‖ q) with π non-empty and (µ1, µ2) ∈ D(π). Let
π′, µ′1 and µ′2 be the prefixes of length |π| − 1 of π, µ1 and µ2 respectively. Then
(µ′1, µ

′
2) ∈ D(π′).

This lemma follows directly from the definition of D.

Proof of Theorem 1. We prove both implications simultaneously by induction
on the structure of ϕ. In the following text, the terms “the left-hand side” and
“the right-hand side” refer respectively to the left- and right-hand sides of the
above implications where the quantifier used in the right-hand side will be made
clear by the context.

Case ϕ = > Then ϕ/(q, µ2) = > and both sides of both (2) and (3) are
trivially satisfied.

Case ϕ = ψ1 ∧ ψ2

(⇒) First assume (p ‖ q, π) �∗ ψ1 ∧ ψ2 and let (µ1, µ2) ∈ D(π). Since both
ψ1 and ψ2 are smaller than ϕ and both are satisfied by (p ‖ q, π) we have
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by induction that (p, µ1) �∗ ψi/(q, µ2) for i ∈ {1, 2}. Since ϕ/(q, µ2) = (ψ1 ∧
ψ2)/(q, µ2) = ψ1/(q, µ2) ∧ ψ2/(q, µ2) we obtain (p, µ1) �∗ ϕ/(q, µ2).

(⇐) Now assume the right side of (3),

∃(µ1, µ2) ∈ D(π) : (p, µ1) �∗ (ψ1 ∧ ψ2)/(q, µ2).

By definition the formula is equal to ψ1/(q, µ1)∧ψ2/(q, µ2). By induction (p ‖ q, π)
satisfies both ψ1 and ψ2 and thus also ψ1 ∧ ψ2 = ϕ.

Case ϕ = ¬ψ
(⇒) First assume the left side (p ‖ q, π) �∗ ¬ψ. Assume towards contradic-
tion that there does exist a decomposition (µ′1, µ

′
2) ∈ D(π) such that (p, µ′1) �∗

ψ/(q, µ′2). Then by induction (3) gives (p ‖ q, π) �∗ ψ, which is in direct contra-
diction with our assumption. Since no such decomposition can exist, it holds for
all (µ1, µ2) ∈ D(π) that (p, µ1) �∗ ¬ψ/(q, µ2) = ϕ/(q, µ2).

(⇐) Assume the right side of (3), namely there exists a decomposition (µ1, µ2) ∈
D(π) such that (p, µ1) �∗ ¬ψ/(q, µ2). Assume, again towards a contradiction,
that (p ‖ q, π) �∗ ψ. By induction, (2) then gives that for all (µ′1, µ

′
2) ∈ D(π),

(p, µ′1) �∗ ψ/(q, µ′2). In particular, this holds for the decomposition (µ1, µ2),
which contradicts our assumption. Therefore we must have that (p ‖ q, π) �∗

¬ψ = ϕ.

Case ϕ = 〈α〉ψ
(⇒) Again, first assume the left side and take (µ1, µ2) ∈ D(π). Then there
exists a computation (p ‖ q, π′) s.t. (p ‖ q, π) α−→ (p ‖ q, π′) and (p ‖ q, π′) �∗
ψ. By part (i) of Lemma 5 there exists a pair (µ′1, µ

′
2) ∈ D(π′). Since ψ is a

subformula of ϕ we have by induction that

(p, µ′1) �∗ ψ/(q, µ′2) (9)

Lemma 5 also states that one of the following three cases holds.

1. (p, µ1) α−→ (p, µ′1) and (q, µ2) 99K (q, µ′2). From (9) we have that (p, µ1) �∗

〈α〉(ψ/(q, µ′2)) and since the formula 〈α〉(ψ/(q, µ′2)) is the first clause of the
disjunction defining ϕ/(q, µ2) then also (p, µ1) �∗ ϕ/(q, µ2).

2. (p, µ1) 99K (p, µ′1) and (q, µ2) α−→ (q, µ′2). Again from (9) we have that
(p, µ1) �∗ 〈99K〉(ψ/(q, µ′2)), and again the formula 〈99K〉(ψ/(q, µ′2)) is a clause
of the disjunction defining ϕ/(q, µ2) so (p, µ1) �∗ ϕ/(q, µ2).

3. α = τ , (p, µ1) a−→ (p, µ′1) and (q, µ2) ā−→ (q, µ′2) for some a ∈ A. Then the
disjunction ϕ/(q, µ2) has a clause 〈a〉 (ψ/(q, µ′2)) (note that ¯̄a = a). By (9)
we get that (p, µ1) �∗ ϕ/(q, µ2).

In all cases the result is the same, namely (p, µ1) �∗ ϕ/(q, µ2) which is what we
wanted to prove.

(⇐) Now assume the right side of (3), i.e. there exists a (µ1, µ2) ∈ D(π) such
that that (p, µ1) �∗ 〈α〉ψ/(q, µ2). We know 〈α〉ψ/(q, µ2) is a disjunction of one
or more clauses so (p, µ1) must satisfy at least one of them. Each clause has one
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of three forms, and we analyze the possible cases. Let ϕ′ be a clause that (p, µ1)
satisfies.

1. Assume that ϕ′ = 〈α〉 (ψ/(q, µ2)(q′ 99K q′)) where q′ = last(q, µ2). Then
there is a µ′1 such that (p, µ1) α−→ (p, µ′1) and (p, µ′1) �∗ ψ/(q, µ2(q′ 99K q′)). If
we let µ′2 = µ2(q′ 99K q′) then part (ii) of Lemma 5 gives that there exists a π′

with (µ′1, µ
′
2) ∈ D(π′) and (p ‖ q, π) α−→ (p ‖ q, π′). Since (p, µ′1) �∗ ψ/(q, µ′2)

then by induction, since ψ is smaller than ϕ, (p ‖ q, π′) �∗ ψ. This in turn
means that (p ‖ q, π) �∗ 〈α〉ψ = ϕ.

2. Assume that ϕ′ = 〈99K〉 (ψ/(q, µ′2)) for some µ′2 such that (q, µ2) α−→ (q, µ′2).
Let µ′1 = µ1(p′ 99K p′) where p′ = last(p, µ1). Lemma 5 gives the existence
of π′ with (µ′1, µ

′
2) ∈ D(π′) and (p ‖ q, π) α−→ (p ‖ q, π′). Since (p, µ′1) �∗

ψ/(q, µ′2) then by induction (p ‖ q, π′) �∗ ψ and thus (p ‖ q, π) �∗ 〈α〉ψ = ϕ.
3. Assume that α = τ and ϕ′ = 〈ā〉 (ψ/(q, µ′2)) for some µ′2 s.t. (q, µ2) a−→ (q, µ′2)

and a ∈ A. This means there is a µ′1 with (p, µ1) ā−→ (p, µ′1). Lemma 5 then
says that there exists π′ with (p ‖ q, π) τ−→ (p ‖ q, π′) and (µ′1, µ

′
2) ∈ D(π′).

Since (p, µ′1) �∗ ψ/(q, µ′2) then by induction (p ‖ q, π′) �∗ ψ and thus
(p ‖ q, π) �∗ 〈τ〉ψ = ϕ.

In all cases we obtain what we wanted to prove, namely (p ‖ q, π) �∗ ϕ.

Case ϕ = 〈←α〉ψ
(⇒) Assume that (p ‖ q, π) �∗ 〈←α〉ψ and take (µ1, µ2) ∈ D(π). Since
(p ‖ q, π′) α−→ (p ‖ q, π) for some π′ such that (p ‖ q, π′) �∗ ψ, there exist pro-
cesses p′, q′, p′′, q′′ such that π = π′(p′′ ‖ q′′ α−→ p′ ‖ q′). By analysing the
definition of D, we can gain some information about µ1 and µ2, in particular by
comparing p′′ to p′ and q′′ to q′. Since p′′ ‖ q′′ 6≡ p′ ‖ q′ we must consider three
cases.

1. p′′ 6≡ p′ and q′′ ≡ q′. Then (µ1, µ2) = (µ′1(p′′ α−→ p′), µ′2(q′ 99K q′)) for some
(µ′1, µ

′
2) ∈ D(π′). Given this form of µ2 we also know that (〈←α〉ψ)/(q, µ2) =

〈←α〉 (ψ/(q, µ′2)). Since (p ‖ q, π′) �∗ ψ, we get by induction that (p, µ′1) �∗

ψ/(q, µ′2), which in turn means that (p, µ1) �∗ 〈←α〉 (ψ/(q, µ2)) and since
the last step of µ2 is a pseudo-step, 〈←α〉 (ψ/(q, µ2)) = (〈←α〉ψ)/(q, µ2).

2. p′′ ≡ p′ and q′′ 6≡ q′. In this case (µ1, µ2) = (µ′1(p′ 99K p′), µ′2(q′′ α−→ q′))
where (µ′1, µ

′
2) ∈ D(π′). This form of µ2 means that 〈←α〉ψ/(q, µ2) =

〈L99〉 (ψ/(q, µ′2)). By induction, the fact that (p ‖ q, π′) �∗ ψ gives that
(p, µ′1) �∗ ψ/(q, µ′2), so since µ2 = µ′2(q′′ α−→ q′) holds, then we have that
(p, µ1) �∗ 〈L99〉 (ψ/(q, µ′2)) = (〈←α〉ψ)/(q, µ2).

3. p′′ 6≡ p′ and q′′ 6≡ q′. By Lemma 4 α must be equal to τ . Thus we have
that (µ1, µ2) = (µ′1(p′′ a−→ p′), µ′2(q′′ ā−→ q′)) for some a ∈ A and (µ′1, µ

′
2) ∈

D(π′). This also means that (〈←α〉ψ)/(q, µ2) = 〈←a〉 (ψ/(q, µ′2)). Since (p ‖
q, π′) �∗ ψ we again have by induction that (p, µ′1) �∗ ψ/(q, µ′2). We therefore
obtain that (p, µ1) �∗ 〈←a〉 (ψ/(q, µ′2)) = (〈←α〉ψ)/(q, µ2).

In all cases we obtain the same result, namely (p, µ1) �∗ (〈←α〉ψ)/(q, µ2) =
ϕ/(q, µ2).
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(⇐) Now assume that there is (µ1, µ2) ∈ D(π) s.t. (p, µ1) �∗ (〈←α〉ψ)/(q, µ2).
This means that µ1 and µ2 are non-empty. By comparing α with the last tran-
sition of µ2 we can infer the form of (〈←α〉ψ)/(q, µ2).

– If the last transition of µ2 is a 99K transition, i.e. µ2 = µ′2(q′ 99K q′)
for some µ2 and q′ = last(q, µ2), then we know that (〈←α〉ψ)/(q, µ2) =
〈←α〉 (ψ/(q, µ′2)). By our assumption this is satisfied by (p, µ1) so there
exists a µ′1 s.t. (p, µ′1) α−→ (p, µ1) and (p, µ′1) �∗ ψ/(q, µ′2). Let π′ be π
without the last transition (note that π is non-empty since µ1 and µ2 are).
By Lemma 6 (µ′1, µ

′
2) ∈ D(π′) and by induction we have that (p ‖ q, π′) �∗ ψ.

From the definition of D we can also see that the last transition of π can
only be α−→ . Thus (p ‖ q, π′) α−→ (p ‖ q, π) so (p ‖ q, π) �∗ 〈←α〉ψ.

– If the last transition of µ2 is an α−→ transition, i.e. one having the same
label as the formula is testing for, then (〈←α〉ψ)/(q, µ2) = 〈L99〉 (ψ/(q, µ′2))
where µ′2 is µ2 without the last transition. Note that (q, µ′2) α−→ (q, µ2).
Since (p, µ1) satisfies this formula there is a µ′1 s.t. (p, µ′1) 99K (p, µ1) and
(p, µ1) �∗ ψ/(q, µ′2). By Lemma 6 (µ′1, µ

′
2) ∈ D(π′) where π′ is again π

without the last transition. Also again, we can see from the definition of D
that (p ‖ q, π′) α−→ (p ‖ q, π). By induction it thus holds that (p ‖ q, π′) �∗ ψ
and so (p ‖ q, π) �∗ 〈←α〉ψ.

– The only remaining case to consider is when µ2 ends with a transition
β−→ where β 6= α. Then α can only be τ , since otherwise the formula

(〈←α〉ψ)/(q, µ2) equals ⊥, which contradicts our assumption that (p, µ1)
satisfies it. Since β 6= α = τ we also know β must be some label a ∈ A.
This means that (〈←α〉ψ)/(q, µ2) = 〈← ā〉 (ψ/(q, µ′2)) where µ′2 is yet again
µ2 without the last transition. Since (p, µ1) satisfies this formula, there is a
µ′1 s.t. (p, µ′1) ā−→ (p, µ1) and (p, µ′1) �∗ ψ/(q, µ′2). By Lemma 6, (µ′1, µ

′
2) ∈

D(π′) where π′ is π without the last transition. By induction, (p ‖ q, π′) �∗ ψ
and from the definition of D we can see that (p ‖ q, π′) τ−→ (p ‖ q, π)
is the only possible transition between the two computations. Therefore,
(p ‖ q, π) �∗ 〈←τ〉ψ = 〈←α〉ψ.

In all cases (p ‖ q, π) �∗ 〈←α〉ψ = ϕ.

Case ϕ = 〈99K〉ψ
(⇒) First assume (p ‖ q, π) �∗ 〈99K〉ψ and take (µ1, µ2) ∈ D(π). This means
there exists a π′ s.t. (p ‖ q, π) 99K (p ‖ q, π′) and (p ‖ q, π′) �∗ ψ. By defini-
tion (〈99K〉ψ)/(q, µ2) = 〈99K〉 (ψ/(q, µ′2)), where we let (µ′1, µ

′
2) = (µ1(p′ 99K p′),

µ2(q′ 99K q′)) with (p′ ‖ q′) = last (p ‖ q, π). This is according to the defini-
tion of D so (µ′1, µ

′
2) ∈ D(π′). Thus, by induction (p, µ′1) �∗ ψ/(q, µ′2). Since

(p, µ1) 99K (p, µ′1) we obtain that (p, µ1) �∗ 〈99K〉 (ψ/(q, µ′2)) = (〈99K〉ψ)/(q, µ2).

(⇐) Assume that ∃(µ1, µ2) ∈ D(π) : (p, µ1) �∗ (〈99K〉ψ)/(q, µ2). We want to
show that (p ‖ q, π) �∗ 〈99K〉ψ. Let p′ = last(µ1) and q′ = last(µ2). The formula
〈99K〉ψ)/(q, µ2) is equal to 〈99K〉 (ψ/(q, µ′2)) where µ′2 = µ2(q′ 99K q′). If we let
π′ = π(p′ ‖ q′ 99K p′ ‖ q′) and µ′1 = µ1(p′ 99K p′), then, by definition of D,
(µ′1, µ

′
2) ∈ D(π′). Observe that (p, µ1) 99K (p, µ′1) and that the 99K relation is
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deterministic. Therefore (p, µ′1) �∗ ψ/(q, µ′2) for each (µ1, µ2). Induction gives
that (p ‖ q, π′) �∗ ψ. Now it follows trivially that (p ‖ q, π) �∗ 〈99K〉ψ because
(p ‖ q, π) 99K (p ‖ q, π′).
Case ϕ = 〈L99〉ϕ
(⇒) Assume (p ‖ q, π) �∗ 〈L99〉ψ and take (µ1, µ2) ∈ D(π). This means that
π = π′(p′ ‖ q′ 99K p′ ‖ q′) and (p ‖ q, π′) �∗ ψ, where p′ ‖ q′ = last(π). It is
obvious, from the definition of D that µ1 and µ2 both end with 99K since π ends
with 99K . Let π′, µ′1, µ

′
2 be π, µ1, µ2 without their last transition respectively

(note that our assumption guarantees that they are non-empty). By Lemma 6
we know that (µ′1, µ

′
2) ∈ D(π′). Since (p ‖ q, π′) �∗ ψ, we have by induction that

(p, µ′1) �∗ ψ/(q, µ′2). Then (p, µ1) �∗ 〈L99〉 (ψ/(q, µ′2)) = (〈L99〉ψ)/(q, µ2).

(⇐) Now assume ∃(µ1, µ2) ∈ D(π) : (p, µ1) �∗ (〈L99〉ψ)/(q, µ2). Then the last
step of µ2 is 99K since otherwise the formula would be equal to ⊥, which could
not be satisfied by (p, µ1). We see furthermore that the quotiented formula is
〈L99〉 (ψ/(q, µ′2)) where µ′2 is again µ2 without its last step. This means the last
step of µ1 is also 〈99K〉 (a fact we could also have deduced from the definition of
D). Let µ′1 be µ1 without this step. If we also let π′ be π without the last step,
then by Lemma 6 we have (µ′1, µ

′
2) ∈ D(π′). Since (p, µ′1) �∗ ψ/(q, µ′2) induction

gives that (p ‖ q, π′) �∗ ψ. By the definition of D we see that the last step of π
can only be 99K so (p ‖ q, π) �∗ 〈L99〉ψ.

This concludes the analysis of all structural forms for ϕ. In each case we have
shown by structural induction that each direction of the theorem holds. ut

Proof of Corollary 1. (⇒) This case follows directly from the theorem.

(⇐) Assume that ∀(µ1, µ2) ∈ D(π) : (p, µ1) �∗ ϕ/(q, µ2). Specifically, since
there exists at least one decomposition (µ′1, µ

′
2) ∈ D(π), the above holds for

that particular decomposition. By the ⇐ part of Theorem 1, we thus have that
(p ‖ q, π) �∗ ϕ. ut

B Proofs for Section 5

Lemma 7. If paths µ1 and µ2 are compatible, then there exists a unique path π
such that (µ1, µ2) ∈ D(π).

Proof of Lemma 7. The path π is constructed in the obvious way, each transition
of it is obtained by composing the processes from the matching transitions of µ1

and µ2 with the parallel operator and determining the action according to the
rules for that operator. The conditions of Definition 8 ensure that the choice of
actions is unambiguous in every case. The rest is easy to check with the definition
of D. ut

Proof of Theorem 2. The proof follows the lines of the one for Theorem 1. We
therefore limit ourselves to considering the case when ϕ = X for X ∈ X .
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Case ϕ = X ∈ X
(⇒) Assume (p ‖ q, π) �σ ϕ. This means (p ‖ q, π) ∈ [[X]]σ = σ(X). Now take
any (µ1, µ2) ∈ D(π). By definition of Φ we have that (p, µ1) ∈ Φ(σ)(X/(q, µ2)),
which in turn means that (p, µ1) ∈ [[X/(q, µ2)]]Φ(σ), which was to be proved.

(⇐) Assume that (p, µ1) ∈ [[X/(q, µ2)]]σ′ = σ′(X/(q, µ2)), for some (µ1, µ2) ∈
D(π). By the definition of Ψ we obtain directly that (p ‖ q, π) ∈ Ψ(σ′)(X), which
means that (p ‖ q, π) ∈ [[X]]Ψ(σ′). ut

Proof of Lemma 3. Let σ ∈ EX . Then for any X ∈ X

(p ‖ q, π) ∈ (Ψ(Φ(σ))(X)
⇔ ∀(µ1, µ2) ∈ D(π) : (p, µ1) ∈ Φ(σ)(X/(q, µ2))
⇔ ∀(µ1, µ2) ∈ D(π) : ∃π′ : (p ‖ q, π′) ∈ σ(X) ∧ (µ1, µ2) ∈ D(π′).

By Lemma 1 we have that in the last line, π = π′, which allows us to continue
thus:

⇔ ∀(µ1, µ2) ∈ D(π) : (p ‖ q, π) ∈ σ(X)
⇔ (p ‖ q, π) ∈ σ(X).

This shows that the sets σ(X) and (Ψ(Φ(σ)))(X) are equal.
Now let σ′ ∈ EX×C . For any X/(q, µ2) ∈ X × C

(p, µ1) ∈ (Φ(Ψ(σ′))(X/(q, µ2))
⇔ ∃π : (µ1, µ2) ∈ D(π) ∧ (p ‖ q, π) ∈ Ψ(σ′)(X)
⇔ ∃π : (µ1, µ2) ∈ D(π) ∧ (∀(µ′1, µ′2) ∈ D(π) : (p, µ′1) ∈ σ′(X/(q, µ′2)))
⇒ ∃π : (p, µ1) ∈ σ′(X/(q, µ2))
⇔ (p, µ1) ∈ σ′(X/(q, µ2)).

This shows that, for any variable X/(q, µ2),

(Φ(Ψ(σ′)))(X/(q, µ2)) ⊆ σ′(X/(q, µ2)).

Now assume (p, µ1) ∈ σ′(X/(q, µ2)), or in other words (p, µ1) ∈ [[X/(q, µ2)]]σ′.
By applying the second part of Theorem 2, we obtain

(p ‖ q, π) ∈ [[X]]Ψ(σ′),

where π is the unique path from p ‖ q such that (µ1, µ2) ∈ D(π). Now we can
apply the first part of the theorem in turn, which gives

∀(µ′1, µ′2) ∈ D(π) : (p, µ′1) ∈ [[X/(q, µ′2)]]Φ(Ψ(σ′)).

In particular, this holds for (µ1, µ2), i.e. (p, µ1) ∈ (Φ(Ψ(σ′)))(X/(q, µ2)). This
shows that

σ′(X/(q, µ2)) ⊆ (Φ(Ψ(σ′)))(X/(q, µ2)).
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Since we have shown containment in both directions, it follows that σ′ =
Φ(Ψ(σ′)), which concludes the proof. ut

Proof of Theorem 3. We limit ourselves to showing that if σ′ is a model of D′,
then Ψ(σ′) is a model for the declaration D. The other statement can be proved
following similar lines. To this end, assume that σ′ is a model of D′. We reason
as follows:

(p ‖ q, π) �Ψ(σ′) X ⇔ ∀(µ1, µ2) ∈ D(π) : (p, µ1) �σ′ X/(q, µ2)
(Theorem 2)

⇔ ∀(µ1, µ2) ∈ D(π) : (p, µ1) �σ′ D′(X/(q, µ2))
(σ′ is a model of D′)

⇔ ∀(µ1, µ2) ∈ D(π) : (p, µ1) �σ′ D(X)/(q, µ2)
(Definition of D′)

⇔ (p ‖ q, π) �Ψ(σ′) X (Theorem 2).

Hence, Ψ(σ′) is a model for the declaration D, which was to be shown. ut
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