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Abstract

This paper contributes to the study of the equational theory of the priority operator of
Baeten, Bergstra and Klop in the setting of the process algebra BCCSP. It is shown that,
in the presence of at least two actions, the collection of process equations over BCCSP with
the priority operator that are valid modulo bisimilarity, irrespective of the chosen priority
order over actions, is not finitely based. This holds true even if one restricts oneself to the
collection of valid process equations that do not contain occurrences of process variables.
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1� Introduction

The well-known priority operator Θ was introduced by Baeten, Bergstra and Klop in the
context of process algebra in [2]. �See, e.g., [5, 6, 7] and the references therein for later
accounts of the notion of priority in the setting of process description languages.) The
priority operator Θ gives certain actions priority over others based on an irreflexive partial
ordering relation > over the set of actions. Intuitively, b > a is interpreted as “action b has
priority over action a”. This means that, in the context of the priority operator Θ, action a

is preempted by action b. For example, if p is some process that can initially perform both
a and b, then Θ�p) will initially only be able to execute the action b.

In their classic paper [2], Baeten, Bergstra and Klop provided a sound and ground-complete
axiomatization for this operator modulo bisimulation equivalence [11, 12]. �An axiomati-
zation is ground complete if it can be used to prove all the valid equations relating terms
without variables.) Their axiomatization uses predicates on actions �to express priorities
between actions) and one extra auxiliary operator. Bergstra showed in the earlier paper [3]
that, in case of a finite alphabet of actions, there exists a finite equational axiomatization
for Θ, without action predicates and auxiliary operators. So, if the set of actions is finite,
neither equations with action predicates as conditions nor auxiliary operators, as used in [2],
are actually necessary to obtain a finite axiomatization of bisimulation equivalence over basic
process description languages enriched with the priority operator.

�The work of Aceto and Ingolfsdottir has been partially supported by the projects “New Developments in
Operational Semantics” �nr. 080039021) and “Meta-theory of Algebraic Process Theories” �nr. 100014021)
of the Icelandic Research Fund.
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A study of the equational theory of the priority operator modulo bisimilarity in the presence
of an infinite collection of actions was carried out in [1] in the setting of the process algebra
BCCSP, a process description language that contains only basic process algebraic operators
from CCS [11] and CSP [8], but is sufficiently powerful to express all finite synchronization
trees. In that paper, Aceto, Chen, Fokkink and Ingolfsdottir showed that, in the presence of
a non-trivial priority order, there is no finite, purely equational axiomatization for BCCSP
enriched with the priority operator. This result even applies if one is allowed to add an arbi-
trary collection of auxiliary operators to the syntax, and indicates that the use of equations
with action predicates as conditions is essential for axiomatizing Θ if the set of actions is
infinite. The aforementioned reference also exhibits a specific priority order with respect to
which bisimilarity affords no finite, sound and ground-complete axiomatization in terms of
equations with action predicates as conditions. This result indicates that, in general, the use
of auxiliary operators is necessary to axiomatize bisimilarity finitely, even using equations
with action predicates as conditions. In some sense, the main theorems offered in [1] may
be seen as providing a technical justification for the choices made by Baeten, Bergstra and
Klop in [2].

All of the aforementioned references investigate the equational theory of the priority operator
with respect to a given priority order>. This leaves open the natural question of whether the
collection of equations that are valid modulo bisimilarity over the language BCCSP enriched
with the priority operator irrespective of the chosen priority order affords a finite equational
axiomatization. The aim of this study is to provide an answer to this question. We shall
prove that the collection of equations over our language that are valid modulo bisimilarity
irrespective of the chosen priority order affords no finite equational axiomatization in the
presence of at least two distinct actions. �Note that the priority operator is only of interest
when the collection of actions satisfies this assumption.) Moreover, this negative result
holds true even if we restrict ourselves to the collection of valid equations that contain no
occurrences of process variables.

Our negative result is perhaps surprising, because one might expect that there are very few
non-trivial identities involving the priority operator that hold irrespective of the priority
order. To see that this is not the case, however, consider the following infinite family of
valid equations �n ≥ 0)

an.�b + c) + an.b + an.c ≈ an.�b + c) + an.b + an.c + an.Θ�b + c) �

where b and c are distinct actions, and we write an for a sequence of n occurrences of an
a-prefixing operator. We exploit this infinite family in the proof of our non-finite axioma-
tizability result by showing that no finite collection of valid equations can prove all of the
identities in the family. The crux of the proof of our main result is a statement to the effect
that, when n is “large enough”, the property of having a “successor at depth n” whose set
of initial actions depends on the chosen priority order is preserved by equational derivations
from a finite set of valid equations E. This means that if E proves an equation p ≈ q and
one of the two terms has this property, then so does the other one. Note that the process
term an.Θ�b + c) has a successor at depth n, namely Θ�b + c), whose set of initial actions
depends on the priority order, whereas an.�b + c) + an.b + an.c does not.

The proof of the validity of the equations in the above family uses a case analysis on the
possible relation between the actions b and c, with respect to a priority order, at arbitrary
depth in the behaviour of process terms. As the proof of our main technical result, namely
Theorem 22 to follow, shows, this case analysis cannot be implemented equationally by
means of a finite collection of valid equations.

The rest of the paper is organized as follows. Section 2 is devoted to preliminary definitions
and results. We present the proof of our main result in Section 3. We conclude the paper
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with a summary of its main results and some directions for future research in Section 4.

2� Preliminaries

Syntax. Let � be a set of actions, and let V be a countably infinite set of variables. The
set of process terms is generated by the following grammar:

t ::= 0 | α.t | t + t | Θ�t) | x �

with α ranging over � and x ranging over V . We let t and u �possibly with subscripts
or superscripts) range over process terms. A process term is closed if it does not contain
any variables. We shall typically denote closed process terms by p and q �possibly with
subscripts or superscripts). As usual in the literature on process algebras, we sometimes
write α instead of α.0.

In this paper we denote the set of natural numbers by �.

Operational semantics. We proceed to define an �-labelled transition relation on closed
process terms using structural operational semantics [13]. The operational rule for Θ pre-
supposes a priority order, i.e., a strict partial order > on �; α > β is to be read as
“α-transitions have priority over β-transitions.” We say that an action α has maximal pri-
ority with respect to > if there does not exist an action β such that β > α. The �-labelled
transition relation →� with respect to the priority order > will be defined as the unique
supported model, in the sense of [4], of the rules below. As usual, we write p

α−−→� p� if
�p� α� p�) ∈ →� .

1
α.p

α−−→� p
2

p
α

−−→� p�

p + q
α−−→� p�

3
q

α
−−→� q�

p + q
α−−→� q�

4
p

α
−−→� p� ∀β > α. p

β
−−��

Θ�p)
α

−−→� Θ�p�)

It is well known that the transition relation →� is the one defined by structural induction
over closed terms using the above rules.

Let p and p� be closed process terms. We denote by I��p) the set of initial actions of p
with respect to >, i.e., I��p) = {α | ∃p�. p

α
−−→� p�}. �Note that I��p) is finite for each

priority order > and closed term p.) We write p −−→� p� if p
α

−−→� p� for some α ∈ �, and
p−−→k

� p� �k ∈ �) if there exist p0� p1� . . . � pk such that p = p0−−→� p1−−→� · · ·−−→� pk = p�.
The depth d��p) of p with respect to > is the largest k ∈ � such that p −−→k

� p� for some
closed process term p�. The following generalization of I� will also be used as an auxiliary
notion: we denote by Actsk��p) the set of all actions that are enabled at depth k �k ∈ �)
with respect to >, and we denote by Acts∗��p) the set of all actions that are enabled at
some depth with respect to >. That is,

Actsk��p) =
�

{I��p
�) | p −−→k

� p�} � and Acts∗��p) =
�

k∈�

Actsk��p) .

Note that the choice of priority order affects the operational semantics associated with closed
process terms by restricting the transition relation. For example, the closed process term
Θ�a.0+ b.0) affords both a- and b-labelled transitions if > is empty, but only an a-labelled
transition if > = {�a� b)}. A major part of our technical reasoning later on will, however, be
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based on the unrestricted transition relation−−→� induced by the empty priority order �which
intuitively gives all actions the same priority). For the sake of succinctness, it is therefore
convenient to drop the subscript ∅ for −−→� and its derived notions I�, −−→

k
�
�k ∈ �) and d�.

That is, we simply write p α−−→ p� instead of p α−−→� p
�, I�p) instead of I��p), p−−→

k p� instead
of p −−→k

�
p�, d�p) instead of d��p), Actsk�p) instead of Actsk��p), and Acts∗�p) instead of

Acts∗��p).

Furthermore, it will be convenient below to also make use of the �-labelled transition relation
and its derived notions as induced on the set of all process terms by the operational rules
above. �The absence of rules for variables in the operational semantics simply implies that
variables do not give rise to any transitions.)

If σ is a substitution, i.e., a mapping from variables to process terms, and t is a process
term, then by σ�t) we denote the process term obtained by replacing all occurrences of
variables x by σ�x). The term σ�t) is called a substitution instance of t. A substitution
is closed if it maps every variable to a closed term. Below, we shall establish a precise
correspondence between the operational behaviour of a process term and that of a closed
substitution instance. Let us first illustrate some subtleties with an example.

Example 1� Let t = Θ�a.x +Θ�y)), and let σ be some closed substitution. Then t
a

−−→ x.
Moreover, σ�t)

a
−−→� σ�Θ�x)), provided that I��σ�Θ�y))) does not contain an action with

a higher priority than a. For example, if σ�y) = b.0, and a and b are incomparable with
respect to >, then σ�t)

a
−−→� σ�Θ�x))). On the other hand, σ�t) does not afford an a-

labelled transition with respect to > if b > a. Of course, transitions of σ�x) do not give rise
to transitions of σ�t), because the occurrence of x is guarded by the action prefix a.; we say
that x is not enabled in t. On the other hand, the variable y is enabled in t �there are no
action prefixes on the path from the root of t to the occurrence of y). Therefore, �initial)

transitions of σ�y) may give rise to �initial) transitions of σ�t); e.g., if σ�y)
b

−−→� p, then

σ�t)
b

−−→� Θ�Θ�p)), unless a > b or I��σ�y)) contains an action with a higher priority than
b.

As illustrated in the above example, it may happen that there is a transition t
α

−−→ t�, but
not a transition σ�t)

α
−−→� σ�t�). If α has maximal priority with respect to >, however, then

we can be sure that t
α

−−→� t� implies σ�t)
α

−−→� σ�t�).

Lemma 2� Let t and t� be process terms, let α be an action with maximal priority with
respect to >. If t

α
−−→� t�, then σ�t)

α
−−→� σ�t�) for all substitutions σ.

Proof. Note that if α has maximal priority with respect to >, then the premise ∀β >

α. p
β

−−�� of Rule 4 is vacuously true. Therefore, the lemma can be established with a
straigthforward induction on a derivation of t

α
−−→� t�.

If t is a process term, x is a variable, and σ is a closed substitution, then transitions of σ�x)
may induce transitions of σ�t) only if σ�x) is enabled. As can be seen from the example
above, in order to determine the target of a transition from σ�t) induced by a transition
σ�x), we need to know how many Θ-operators are on a path from the root of t to an enabled
occurrence of x in t. In the following definition, we shall define relations �� �� ∈ �) between
variables and process terms such that x �� t if x has an occurrence in t, and on the path
from the root of t to this occurrence there are no applications of an action prefix and there
are � applications of the Θ-operator.

Definition 3� We define the relations �� �� ∈ �) between variables and process terms as
the least relations satisfying, for all variables x, for all natural numbers �, and for all process
terms t and u, the following clauses:
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�i) x �0 x;

�ii) if x �� t, then x �� t + u and x �� u + t; and

�iii) if x �� t, then x ��+1 Θ�t).

If x �� t for some � ∈ �, then we say that x is enabled in t.

Using the relations �� �� ∈ �) we shall now establish a formal correspondence between
the transitions of a process term and those of its �closed) substitution instances. First, we
prove in Lemma 4 that a transition of a substitution instance σ�x) of a variable x enabled
in t gives rise to a transition of σ�t), under a proviso to ensure that it is not preempted
by some other transition of σ�t). Then, we prove in Lemma 7 that a transition of a closed
substitution instance σ�t) of a process term t either stems from a transition of t or from
a transition of an occurrence of variable x that is enabled in t. For a succinct formulation
of the lemmas, it is convenient to have a notation for repeated application of Θ; we define
Θk�t) �k ∈ �) inductively as follows: Θ0�t) = t, and Θk+1�t) = Θ�Θk�t)).

Lemma 4� Let t be a process term, let x be a variable, and let � be a natural number such
that x �� t. Furthermore, let σ be a substitution, and suppose that α is an action with
maximal priority with respect to >. Then σ�x)

α
−−→� p implies σ�t)

α
−−→� Θ��p).

Proof. We prove the implication of the lemma by induction on a derivation of x �� t

according to the clauses in Definition 3.

If x �� t according to the first clause, then � = 0 and t = x. So σ�x)
α

−−→� p implies
σ�t)

α
−−→� Θ��p).

If the last clause applied in the derivation of x �� t is the second clause, then there exist
process terms t1 and t2 such that t = t1+ t2, and either x �� t1 or x �� t2. In the first case,
it holds by the induction hypothesis that σ�x)

α
−−→� p implies σ�t1)

α
−−→� Θ��p), and hence,

by Rule 2, σ�t)
α

−−→� Θ��p). In the second case the proof is analogous, using Rule 3 instead
of Rule 2.

If the last clause applied in the derivation of x �� t is the third clause, then � ≥ 1 and there
exists t� such that t = Θ�t�) and x ��−1 t�. If σ�x)

α
−−→� p, then, by the induction hypothesis,

σ�t�)
α

−−→� Θ�−1�p), so, since α has maximal priority with respect to >, by Rule 4 we have
that σ�t) = Θ�σ�t�))

α
−−→� Θ��p).

Corollary 5� Let t be a process term, let x be a variable, and let � be a natural number such
that x �� t. Furthermore, let σ be a substitution, and let k be a positive natural number.
Then σ�x)−−→k p implies σ�t) −−→k Θ��p).

Proof. If σ�x)−−→k p, then σ�x)−−→ p� −−→k−1 p for some p�. Recall that −−→ is based on a
priority order that assigns the same priority to every action, so by Lemma 4 σ�t)−−→Θ��p�),
and by Rule 4 and induction on k− 1 it follows that Θ��p�)−−→k−1 Θ��p). Hence, σ�t)−−→k

Θ��p).

Remark 6� The proviso that k be positive is necessary for the validity of the above state-
ment. Indeed, let t = x+ a.0, and let σ be the substitution mapping all variables to 0. We
have that x �0 t and σ�x)−−→0 0. On the other hand, σ�t) −−→0 0 = Θ0�0) does not hold.

Lemma 7� Let t be a process term, let σ be a closed substitution, let α be an action, and
let p be a closed process term. If σ�t)

α
−−→� p, then either there exists a process term t� such

that t
α

−−→� t� and σ�t�) = p, or there exist a variable x, a closed process term p�, and a
natural number � ∈ � such that x �� t, σ�x)

α
−−→� p�, and Θ��p�) = p.
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Proof. The proof is by structural induction on t.

�ase 1: If t = 0, then σ�t) = 0, which, according to the operational semantics, does not
admit any transitions. So in this case the lemma vacuously holds.

�ase 2: Suppose that t = β.t� for some action β and some process term t�. If σ�t)
α

−−→� p,
then it is clear from the operational semantics that the only transition of σ�t) = β.σ�t�)

is σ�t)
β

−−→� σ�t�). It follows that α = β, so t
α

−−→� t�, and p = σ�t�).

�ase 3: Suppose that t = t1+t2. If σ�t)
α

−−→� p, then by a straightforward reasoning on the
basis of the operational semantics, necessarily either σ�t1)

α
−−→� p or σ�t2)

α
−−→� p. We

assume without loss of generality that σ�t1)
α

−−→� p. Then, according to the induction
hypothesis, we only need to consider the following two subcases:

�ase 3�a): There exists t�1 such that t1
α

−−→� t�1 and σ�t�1) = p. From t1
α

−−→� t�1 it
follows by Rule 2 that t

α
−−→� t�1, so the proof is complete for this subcase.

�ase 3�b): There exist a variable x, a closed process term p�, and a natural number
� such that x �� t1, σ�x) −−→� p�, and Θ��p�) = p. From x �� t1 it follows,
according to Definition 3, that x �� t, so the proof is complete for this subcase.

�ase 4: Suppose that t = Θ�u). If σ�t)
α

−−→� p, then, since σ�t) = Θ�σ�u)), it follows that
Θ�σ�u))

α
−−→� p, so with a straightforward reasoning on the basis of the operational

semantics we can conclude that there exists q such that σ�u)
α

−−→� q and Θ�q) = p.

By the induction hypothesis we only need to consider the following two subcases:

�ase 4�a): There exists a process term u� such that u
α

−−→� u� and σ�u�) = q.

Note that, since t = Θ�u) and σ�t)
α

−−→� p, for all β > α it holds that σ�u)
β

−−�� .

It follows that u
β

−−�� for all β > α. �Indeed, if u
β

−−→� u��, for some β > α and

process term u��, then either σ�u)
β

−−→� σ�u��) or σ�u)
β�

−−→� r, for some β� > α

and closed process term r.) Hence, from u
α

−−→� u� and Rule 4, we may infer
that t = Θ�u)

α
−−→� Θ�u�). We define t� = Θ�u�) and note that t

α
−−→� t� and

σ�t�) = σ�Θ�u�)) = Θ�σ�u�)) = Θ�q) = p. The proof for this subcase is thereby
complete.

�ase 4�b): There exist a variable x, a natural number �, and a closed process term
p� such that x �� u, σ�x)

α
−−→� p�, and Θ��p�) = q. From x �� u it follows that

x ��+1 t, and from Θ��p�) = q it follows that Θ�+1�p�) = Θ�q) = p. The proof
for this subcase is thereby complete.

�ase 5: Suppose that t = x for some variable x. If σ�t)
α

−−→� p, then it is immediate that
x �0 t, σ�x)

α
−−→� p, and Θ0�p) = p. This completes the proof for this case.

Lemma 8� Let t be a process term, let σ be a closed substitution, let n be a natural number,
and let p be a closed process term. If σ�t) −−→n

� p, then either

�i) there exists a process term t� such that t −−→n
� t� and σ�t�) = p, or

�ii) there exist a process term t�, a variable x, a closed process term p�, and natural numbers
k < n and � such that t −−→k

� t�, x �� t
�, σ�x)−−→n−k

� p�, and Θ��p�) = p.

Proof. Suppose that σ�t)−−→n
� p. We proceed by induction on n.

If n = 0, then clearly t −−→n
� t, and from σ�t)−−→n

� p it follows that σ�t) = p.

Suppose that n > 0. Then there exists a closed process term q such that σ�t)−−→� q−−→n−1
� p.

According to Lemma 7 we now need to consider two cases:
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�ase 1: There exists a process term t� such that t −−→� t� and σ�t�) = q.

Then, by the induction hypothesis for q−−→n−1
� p, there are two subcases: If there exist

a process term t�� such that t� −−→n−1
� t�� and σ�t��) = p, then to complete the proof

in this subcase it suffices to note that t −−→n
� t��. If there exist a process term t��, a

variable x, a closed process term p�, and natural numbers k < n − 1 and � such that

t� −−→k
� t��, x �� t

��, σ�x)−−→
�n−1)−k
� p�, and Θ��p�) = p, then to complete the proof in

this subcase it suffices to note that t −−→k+1
� t�� and k + 1 < n.

�ase 2: There exists a variable x, a closed process term q�, and a natural number � ∈ �

such that x �� t, σ�x)−−→� q�, and Θ��q�) = q.

Then from Θ��q�) = q−−→n−1
� p it can be established with induction on n−1, reasoning

on the basis of the operational semantics, that there exists p� such that q� −−→n−1
� p�

and Θ��p�) = p. We define t� = t and k = 0. Then t −−→k
� t�, x �� t

�, σ�x)−−→n−k
� p�,

and Θ��p�) = p, so the proof in this case is also complete.

Bisimilarity. Recall that the operational semantics for closed process terms presupposes
a specific priority order >. A binary symmetric relation R on closed process terms is a
bisimulation [11, 12] with respect to > if it satisfies for all closed process terms p and q such
that p R q, and for all actions α, the following condition:

if p
α

−−→� p�, then there exists q� such that q
α

−−→� q� and p� R q�.

Closed process terms p and q are bisimilar with respect to > �notation: p ↔� q) if there
exists a bisimulation R with respect to > such that p R q. We say that p and q are order-
insensitive bisimilar �notation: p ↔∗ q) if they are bisimilar with respect to every priority
order on �. In what follows, by bisimilarity we always mean order-insensitive bisimilarity.

The relations ↔� and ↔∗ are congruences on the set of closed process terms, i.e., they
are equivalences and compatible with the syntactic constructions of our language of closed
process terms. �Each of the relations ↔� is a congruence because the operational rules for
the operators in our language are in the GSOS format [4], and ↔∗ is a congruence because
it is the intersection of a family of congruence relations.)

The following proposition recalls some basic facts pertaining to bisimilarity with respect to
>.

Proposition 9� Let p and q be closed process terms such that p ↔� q, and let k be a
natural number. Then:

�i) for every closed process term p� such that p −−→k
� p� there exists a closed process term

q� such that q −−→k
� q� and p� ↔� q�; and

�ii) Actsk��p) = Actsk��q), so, in particular, I��p) = I��q).

Remark 10� Note that Proposition 9�i) fails for ↔∗, which is not a bisimulation. As an
example, consider the closed process terms p = a.�b + c)+a.b+a.c and q = p+a.Θ�b + c).
It is not hard to see that p ↔∗ q �see also the proof of Proposition 12 to follow) and
q

a
−−→� Θ�b + c), for any priority order >. On the other hand, as our readers can easily

check, there is no closed process term p� such that p
a

−−→� p� and p� ↔∗ Θ�b + c).

We shall drop the subscript ∅ from ↔
�. Note that ↔ relates closed process terms p and q

if they are bisimilar in the usual sense after removing all occurrences of Θ from p and q.

Let p and q be closed process terms. We say that p is a �semantic) summand of q �notation:
p �∗ q) if there exists some r such that p + r ↔∗ q. The following proposition states some
basic properties of �∗ that will be implicitly used in the technical developments to follow.
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Table 1: Some valid process equations.

A1 x + y ≈ y + x

A2 �x + y) + z ≈ x + �y + z)
A3 x + x ≈ x

A4 x + 0 ≈ x

PR1 Θ�0) ≈ 0

PR2 Θ�Θ�x) + y) ≈ Θ�x + y)
PR3 Θ�α.x) ≈ α.Θ�x)
PR4 Θ�x) + Θ�y) ≈ Θ�x) + Θ�y) + Θ�x + y)
PR5 Θ�α.x + α.y + z) ≈ Θ�α.x + z) + Θ�α.y + z)

Proposition 11� The relation �∗ is a preorder on closed process terms. Moreover, p�+p�� �∗

p implies p� �∗ p and p�� �∗ p, for all closed process terms p, p� and p��.

Equational basis. A process equation is a formula t ≈ u, with t and u process terms; it is
said to be valid if σ�t) ↔∗ σ�u) for every closed substitution σ. If t and u are process terms
such that the process equation t ≈ u is valid, then we shall also write t ↔∗ u. Table 1
lists some well-known valid process equations. The depth of a process equation t ≈ u is the
maximum of the depths of the process terms t and u with respect to the empty priority
order.

Let E be a set of process equations, and let t ≈ u be a process equation; we write E � t ≈ u

if the process equation t ≈ u is derivable from E by means of the rules of equational logic.
In this paper we address the question whether the collection of all valid process equations
is finitely based, i.e., if there exists a finite set E of valid process equations such that

E � t ≈ u if, and only if, t ↔∗ u.

A collection E of valid process equations that have the above property is often referred to
as a complete axiomatization of ↔∗.

3� Bisimilarity is not finitely based

Our order of business in this section is to prove that the collection of all valid process
equations over our language is not finitely based. Moreover, we shall show that the above-
mentioned negative result holds true even if we restrict ourselves to the collection of valid
process equations that do not contain occurrences of process variables—that is, those process
equations that relate closed process terms. In order to establish our main result, we shall
first isolate an infinite family of valid process equations relating closed process terms. Next
we shall show that no finite collection of valid process equations is powerful enough to prove
all the process equations in our family.

Before presenting our infinite family of valid process equations that cannot all be derivable
from some finite set of valid process equations, we first introduce some auxiliary notations
and definitions. Let α be an action and let t be a process term; we define αn.t inductively
by α0.t = t and αn+1.t = α.�αn.t) for all n ∈ �. Now, fix concrete elements a, b and c of
�, and suppose that b �= c. �It is not necessary to require that a is distinct from b or c.)
We define, for n ∈ �, the process term Pn by

Pn = an.�b + c) + an.b + an.c .
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Proposition 12� For every n ∈ �, the process equation Pn + an.Θ�b + c) ≈ Pn is valid.

Proof. It suffices to show that an.Θ�b + c) �∗ Pn, for each n. To this end, let > be a priority
order, and let n be a natural number. Observe that

• if b > c then an.Θ�b + c) ↔� an.b,

• if c > b then an.Θ�b + c) ↔� an.c, and

• if b and c are incomparable with respect to > then an.Θ�b + c) ↔� an.�b + c).

Hence an.Θ�b + c) + Pn ↔� Pn for each priority order > and natural number n. It follows
that an.Θ�b + c) �∗ Pn, for each n.

We shall now proceed to prove that there cannot exist a finite set of valid process equations
from which the process equations in the family

{Pn + an.Θ�b + c) ≈ Pn | n ∈ �}

of valid process equations are all derivable. Our readers might have noticed that the proof of
the validity of the equations in the above family uses a case analysis on the possible relation
between the actions b and c, with respect to a priority order, at arbitrary depth in the
behaviour of process terms. As the proof of our main technical result, namely Theorem 22
to follow, shows, this case analysis cannot be implemented equationally by means of a finite
collection of valid equations.

To formalize the above-mentioned case analysis, we now introduce the notion of Θ-dependent
closed process term, which will play a crucial role in subsequent developments.

Definition 13� A closed process term p is Θ-dependent if there exist priority orders >1

and >2 such that I��
�p) �= I�2

�p).

Intuitively, a closed process term is Θ-dependent if its set of initial actions depends on the
chosen priority order. For example, Θ�b + c) is Θ-dependent, whereas Θ�b) and Θ�c) are
not.

Lemma 14� If p ↔∗ q and p is Θ-dependent, then so is q.

Proof. If p is Θ-dependent, then there exist priority orders >1 and >2 such that I��
�p) �=

I�2
�p). Since p ↔∗ q, it follows that I��p) = I��q) for all priority orders >. So I��

�q) �=
I�2

�q), and hence q is Θ-dependent.

Let p and p� be closed process terms, and let n be a natural number. If p −−→n p�, then we
call p� an n-successor of p. �Note that the notion of n-successor is based on the priority
order that assigns to every action the same priority.)

Note that the three n-successors of Pn are Θ-independent, whereas Pn + an.Θ�b + c) has a
Θ-dependent n-successor Θ�b + c). Hence, to prove that there does not exist a finite set of
valid process equations from which all the process equations

Pn + an.Θ�b + c) ≈ Pn �n ∈ �)

are derivable, it suffices to show that the property of having a Θ-dependent n-successor is
preserved by equational derivations from a finite set of valid equations E when n is “large
enough”. To this end, we presuppose a finite set of valid process equations E, of depth less
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than n, and establish that the following property holds for all closed process terms p and q

such that E � p ≈ q and p� q �∗ Pn:

if p has a Θ-dependent n-successor, then q has a Θ-dependent n-successor too. �†)

The remainder of this section and of the paper will be devoted to a proof of this property,
in case � contains at least two distinct actions.

An important property of the terms Pn is that, intuitively, the only moments of choice in
their induced behaviours occur after 0 and after n steps. We formalize this property and
establish that it is invariant under ↔∗.

Definition 15� Let p be a closed process term. We say that p is determinate if |I�p)| ≤ 1,
and for all closed terms p1 and p2 such that p −−→ p1 and p −−→ p2 it holds that p1 ↔∗ p2.
We say that p is determinate at depth k if all closed process terms p� such that p−−→k p� are
determinate.

Remark 16� In [9], Huynh and Tian call a process locally unary if all of its successors can
initially perform at most one action.

Note that Pn is determinate at depth k for all 1 ≤ k < n. We shall establish that every
semantic summand of Pn is also determinate at all depths 1 ≤ k < n.

Lemma 17� Let p be a closed process term and let p �∗ Pn for some n ∈ �. Then p is
determinate at depth k for all 1 ≤ k < n.

Proof. First we prove that Actsk�p) ⊆ {a} for all 0 ≤ k < n. From p �∗ Pn it follows
that there exists a closed process term r such that p + r ↔∗ Pn, and hence p + r ↔ Pn.
By Proposition 9, Actsk�p + r) = Actsk�Pn) = {a}, and since Actsk�p) ⊆ Actsk�p + r), it
follows that Actsk�p) ⊆ {a}.

Now, to prove that p is determinate at depth k for all 1 ≤ k < n, suppose that 1 ≤ k < n is
the least natural number such that p is not determinate at depth k; we derive a contradiction.
That p is not determinate at depth k means that there exist closed process terms p�, p1 and
p2, and a priority order > such that p −−→k p�, p� −−→ p1, p

� −−→ p2, and p1 �↔� p2. Since
|Actsi�p)| = 1 for all 0 ≤ i < k, from p −−→k p� it follows that p −−→k

� p�. Hence, since
p + r ↔� Pn, by Proposition 9 there exists P �

n such that Pn −−→k
� P �

n and p� ↔� P �
n. From

1 ≤ k < n and the definition of Pn it is clear that there is a unique closed process term
P ��
n such that P �

n −−→ P ��
n . It follows that p1 ↔� P ��

n
↔� p2, so p1 ↔� p2, contradicting an

immediate consequence of the assumption that p� is not determinate. We conclude that p�

is determinate.

The following lemma roughly states that ↔∗ does behave like a bisimulation over determi-
nate processes. �Compare with Remark 10.)

Lemma 18� Let p and q be closed process terms such that p ↔∗ q, and let m be a natural
number such that p and q are determinate at all depths < m. If there exists p� such that
p −−→m p�, then there exists q� such that q −−→m q� and p� ↔∗ q�.

Proof. The proof is by induction on m.

Suppose m = 0. If p� is a closed process term such that p −−→m p�, then p� = p. So we can
take q� = q to obtain that q −−→m q� and p� = p ↔∗ q = q�.

Suppose m > 0. If p� is a closed process term such that p−−→m p�, then there exists a closed
process term p1 such that p −−→ p1 −−→

m−1 p�. Since p ↔∗ q, in particular p ↔ q, so there
exists q1 such that q −−→ q1 and p1 ↔ q1.
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It remains to argue that p1 ↔∗ q1, for then, since p1 and p2 are determinate at all depths
less than m− 1, there exists, by the induction hypothesis, a closed process term q� such that
q1 −−→m−1 q� and p� ↔∗ q�. So let us suppose that p1 �↔∗ q1 and derive a contradiction.
If p1 �↔∗ q1, then there exists > such that p1 �↔� q1. On the other hand, since p ↔∗ q,
there exists q�1 such that q −−→� q�1 and p1 ↔� q�1. Clearly, q −−→ q�1, and hence, since q is
determinate, q1 ↔∗ q�1. We find that p1 ↔� q�1 ↔� q1, which contradicts our assumption
that > is such that p1 �↔� q1. We conclude that p1 ↔∗ q1.

3.1. Proof of the main result

We are now ready to prove that, if E is a finite set of valid process equations of depth less
than n, then property �†) holds. Our proof of this claim is based on establishing that the
property in question is preserved by the inference rules of equational logic.

An important part of our proof consists in establishing some properties of valid process
equations t ≈ u. In particular, the following lemma plays a crucial role in showing that
property �†) holds for closed instantiations of valid process equations whose depth is less
than n.

Lemma 19� Assume that � contains at least two actions, and let a be an action in �. Let
t and u be process terms such that Acts∗�t) ⊆ {a}, let x be a variable, and suppose that
t ↔∗ u. If there exists t� such that t−−→k t� and, for some � ∈ �, x �� t

�, then there exists u�

such that u −−→k u� and, for some m ∈ �, x �m u�. Moreover, � = 0 if, and only if, m = 0.

Proof. Suppose that t ↔∗ u, and let t� be a process term such that t −−→k t� and, for some
� ∈ �, x �� t

�. Let n be larger than the depths of t and u, and let b be an action in � that
is distinct from a. We let > = {�a� b)}, and define the closed substitution � as follows:

��y) =

�
an.�a.0+ b.0) if y = x; and
0 otherwise.

Suppose that t −−→k t�. Then, since Acts∗�t) ⊆ {a}, there exist t0� . . . � tk such that

t = t0
a

−−→ · · ·
a

−−→ tk = t� .

Hence, since a has maximal priority with respect to >, by Lemma 2 and induction on k it
follows that

��t) = ��t0)
a

−−→� · · ·
a

−−→� ��tk) = ��t�) �

so ��t)−−→k
� ��t�). Since x �� t

� and a has maximal priority with respect to >, by Lemma 4

and the definition of � we have that ��t�)−−→n
� Θ��a.0+ b.0). So ��t)−−→k+n

� Θ��a.0+ b.0).

Now, since t ↔∗ u, and hence in particular ��t) ↔� ��u), it follows that there exists a closed
process term p such that ��u)−−→k+n

� p and Θ��a.0+ b.0) ↔� p. Since n is larger than the
depth of u, by Lemma 8 there exist a process term u�, a variable y, a closed process term
p�, and natural numbers h < n and m such that u −−→h

� u�, y �m u�, ��y)−−→n+k−h
� p� and

Θm�p�) = p. From h < n it follows that n+k−h > 0, and therefore, since ��y)−−→n+k−h
� p�,

it is clear from the definition of � and Θ��a.0 + b.0) ↔� Θm�p��) = p that y = x, h = k,
and p� = a.0+ b.0. Moreover, from Θ��a.0+ b.0) ↔� p = Θm�p�) = Θm�a.0+ b.0) and the
definition of >, it follows that � = 0 if, and only if, m = 0.

Remark 20� The first part of the lemma can also be established if � is a singleton set,
using a different substitution in its proof, but then second part of the lemma does not hold.
In fact, if � is a singleton set, then the equation Θ�x) ≈ x is valid.
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The following lemma establishes that closed substitution instances of valid process equations
with a depth less than n preserve the property �†).

Lemma 21� Let t and u be process terms such that t ↔∗ u, and let σ be a closed substitution.
Suppose that Acts∗�t) ⊆ {a} and d�t)� d�u) < n. If σ�t) has a Θ-dependent n-successor,
then σ�u) also has a Θ-dependent n-successor.

Proof. Suppose that p is a Θ-dependent term such that σ�t)−−→n p. Then, since d�t) < n,
there exist, by Lemma 8, a process term t�, a variable x, a closed process term p�, and
natural numbers k < n and � such that t −−→k t�, x �� t

�, σ�x) −−→n−k p�, and Θ��p�) = p.
Observe that, as p is Θ-dependent, the set of actions cannot be a singleton. Therefore, since
Acts∗�t) ⊆ {a}, by Lemma 19 there exist u� and a natural number m such that u−−→ku� and
x �m u�, so by Corollary 5 σ�u�) −−→n−k Θm�p�), and hence σ�u) −−→n Θm�p�). Moreover,
according to Lemma 19, � = 0 if, and only if, m = 0. Hence, since Θ��p�) is Θ-dependent, it
follows that Θm�p�) is Θ-dependent too.

Theorem 22� Assume that � contains at least two actions. Let E be a set of valid process
equations of depth less than n, and let p and q be closed process terms such that p� q �∗ Pn

and E � p ≈ q. If p has a Θ-dependent n-successor, then q has a Θ-dependent n-successor
too.

Proof. Without loss of generality, we may assume that E is symmetric in the sense that if
the process equation t ≈ u is in E, then so is the process equation u ≈ t. If E satisfies this
assumption, then there is a derivation from E of the process equation p ≈ q if, and only
if, there is a derivation of p ≈ q from E without applications of the symmetry rule. This
effectively means that we can disregard the symmetry rule in our inductive proof below.

It is well-known that we may, furthermore, assume without loss of generality that all applica-
tions of the substitution rule in derivations have a process equation from E as premise. This
effectively means that we need not consider the axiom rule —which states that all process
equations in E are derivable—, and the substitution rule —which states that if a process
equation is derivable, then so are all its substitution instances— separately in our inductive
proof below, but instead can consider a new rule stating that all substitution instances of
process equations in E are derivable.

We now proceed by induction on a derivation of p ≈ q satisfying the above assumptions; we
distinguish cases according to the last rule applied in the considered derivation of p ≈ q. If
the last rule is either reflexivity or transitivity, then the claim is immediate or is a direct
consequence of the induction hypothesis. Suppose that p ≈ q is a closed substitution instance
of a process equation t ≈ u in E. Then there exists a closed substitution σ such that p = σ�t)
and q = σ�u). From p �∗ Pn it follows that Acts∗�t) ⊆ {a}, and since t ≈ u is in E, it holds
that t ↔∗ u and d�t)� d�u) < n. Hence, by Lemma 21, if p has a Θ-dependent n-successor,
then q has a Θ-dependent n-successor too. It remains to consider the cases in which the
rule applied in the derivation is one of the three congruence rules.

�ase 1: Suppose that the rule applied last in the considered derivation of p ≈ q is the
congruence rule for +. Then there exist closed process terms p1, p2, q1 and q2 such
that p = p1 + p2 and q = q1 + q2, and p1 ≈ q1 and p2 ≈ q2 are the premises of the last
rule application in the derivation of p ≈ q. If p has a Θ-dependent n-successor, then,
as n > 0, it must be an n-successor of p1 or of p2. Assume, without loss of generality,
that it is an n-successor of p1. Then, since clearly p1� q1 �∗ Pn, we may apply the
induction hypothesis to conclude that q1 has a Θ-dependent n-successor, and hence q

has a Θ-dependent n-successor.
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�ase 2: Suppose that the rule applied last in the considered derivation of p ≈ q is the
congruence rule for α. �α ∈ �). Then there exist p� and q� such that p = α.p�,
q = α.q�, and p� ≈ q�.

Note that, since p� q �∗ Pn, by Lemma 17 p� and q� are determinate at all depths
0� . . . � n − 2. Moreover, since p has a Θ-dependent n-successor, there exists a Θ-
dependent closed process term p�� such that p� −−→n−1 p��. Hence, since p� ↔∗ q�, there
exists by Lemma 18 a closed process term q�� such that q� −−→n−1 q�� and p�� ↔∗ q��.
Since p�� is Θ-dependent, by Lemma 14 q�� is Θ-dependent too.

�ase 3: Suppose that the rule applied last in the considered derivation of p ≈ q is the
congruence rule for Θ. Then there exist p� and q� such that p = Θ�p�), q = Θ�q�), and
p� ≈ q�.

If p has a Θ-dependent n-successor, then, since p = Θ�p�), p� has an n-successor p��,
such that |I�p��)| ≥ 2. Hence, since p� ↔∗ q�, and consequently p� ↔ q�, there exists
a closed process term q�� such that q� −−→n q�� and p�� ↔ q��. From p�� ↔ q�� and
|I�p��)| ≥ 2 it follows that |I�q��)| ≥ 2. Clearly, q = Θ�q�) −−→n Θ�q��). Moreover,
|I�q��)| ≥ 2 implies that Θ�q��) is Θ-dependent, for if > is a priority order that relates
two elements of I�q��), then I�q��) �= I��q

��).

Corollary 23� If � contains at least two actions, then there does not exist a finite set of
valid process equations E such that all valid process equations are derivable from E.

Proof. Suppose that E is a finite set of valid process equations. Then there exists n ∈ �

such that all process equations in E have a depth < n. Hence, by Theorem 22, for all p and q

such that p� q �∗ Pn it holds that if E � p ≈ q and p has a Θ-dependent n-successor, then q

has a Θ-dependent n-successor too. Since Pn+αn.Θ�b + c) has a Θ-dependent n-successor,
but Pn does not, it follows that the valid process equation Pn + αn.Θ�b + c) ≈ Pn is not
derivable from E.

4� Conclusions

In this study, we have shown that, rather surprisingly, the collection of equations that
hold modulo bisimilarity over the language BCCSP enriched with the priority operator
irrespective of the chosen priority order is not finitely based. Moreover, this holds true even
if we restrict ourselves to the collection of valid ground equations—that is, those equations
that do not contain occurrences of variables. As the proof of our main result indicates, the
collection of valid �ground) equations does not even afford a complete axiomatization of
bounded depth. These results provide further evidence of the weakness of equational logic
in axiomatizing the priority operator; see [1] for earlier negative results of this kind and
further references.

In their original paper introducing the priority operator [2], Baeten, Bergstra and Klop
offered a finite, equational, ground-complete axiomatization of bisimilarity using a binary
auxiliary operator, the so-called unless operator. It is an interesting topic for further research
to study whether the unless operator, or some other finite collection of auxiliary operators,
can be used to provide a finite �ground-)complete axiomatization of order-insensitive bisim-
ilarity over BCCSP with priority.

Another interesting question for further study is to find an infinite, but finitely described,
basis of equations for order-insensitive bisimilarity over BCCSP enriched with the priority
operator. In particular, it is natural to wonder what infinite families of equations should
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be added to the collection of axioms in Table 1 in order to obtain a �ground-)complete
axiomatization of order-insensitive bisimilarity.

A classic question in the field of equational logic is the study of the decidability properties of
equational theories, and the characterization of the computational complexity of decidable
theories. �See, e.g., [10] for an encyclopedic survey in the mathematical literature.) It
is an interesting question to determine whether the equational theory of order-insensitive
bisimilarity is decidable over the language considered in this paper and, if so, to find out
what its structural complexity is.

In this paper, we have focused on studying the equational theory of order-insensitive bisim-
ilarity. To the best of our knowledge, much less is known about the axiomatizability prop-
erties of other behavioural semantics in van Glabbeek’s spectrum [14] over BCCSP enriched
with the priority operator. This is yet another avenue for further research, which requires
a study of the congruence properties of the “order-insensitive versions” of the standard
behavioural semantics in the spectrum.
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