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In this paper we propose an extension of the Rebeca language that can be used to model
distributed and asynchronous systems with timing constraints. We provide the formal
semantics of the language using Structural Operational Semantics, and show its expressive-
ness by means of examples. We developed a tool for automated translation from timed
Rebeca to the Erlang language, which provides a first implementation of timed Rebeca.
We can use the tool to set the parameters of timed Rebeca models, which represent the
environment and component variables, and use McErlang to run multiple simulations for
different settings. Timed Rebeca restricts the modeller to a pure asynchronous actor-based
paradigm, where the structure of the model represents the service oriented architecture,
while the computational model matches the network infrastructure. Simulation is shown
to be an effective analysis support, specially where model checking faces almost immediate
state explosion in an asynchronous setting.

1 Introduction

This paper presents an extension of the actor-based Rebeca language [22] that can be used to
model distributed and asynchronous systems with timing constraints. This extension of Rebeca
is motivated by the ubiquitous presence of real-time computing systems, whose behaviour
depends crucially on timing as well as functional requirements.

A well-established paradigm for modelling the functional behaviour of distributed and
asynchronous systems is the actor model. This model was originally introduced by Hewitt [8]
as an agent-based language, and is a mathematical model of concurrent computation that treats
actors as the universal primitives of concurrent computation [1]. In response to a message that
it receives, an actor can make local decisions, create more actors, send more messages, and
determine how to respond to the next message it receives. Actors have encapsulated states
and behaviour, and are capable of redirecting communication links through the exchange of
actor identities. Different interpretations, dialects and extensions of actor models have been
proposed in several domains and are claimed to be the most suitable model of computation for
the dominating applications, such as multi-core programming and web services [9].

Reactive Objects Language, Rebeca [22], is an operational interpretation of the actor model
with formal semantics and model-checking tools. Rebeca is designed to bridge the gap between
formal methods and software engineers. The formal semantics of Rebeca is a solid basis
for its formal verification. Compositional and modular verification, abstraction, symmetry
and partial-order reduction have been investigated for verifying Rebeca models. The theory
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underlying these verification methods is already established and is embodied in verification
tools [14, 21, 22]. With its simple, message-driven and object-based computational model, Java-
like syntax, and a set of verification tools, Rebeca is an interesting and easy-to-learn model for
practitioners.

Motivation and Contribution. Although actors are attracting more and more attention both
in academia and industry, little has been done on timed actors and even less on analyzing timed
actor-based models. In this work we present

• timed Rebeca by extending Rebeca with time constraints,

• the formal semantics of timed Rebeca using Structural Operational Semantics (SOS) [19],

• a tool for mapping timed Rebeca models to Erlang, and

• experimental results from the simulation of timed Rebeca models using McErlang [7].

The contribution of this work is offering a pure asynchronous actor-based modelling lan-
guage with timing primitives and analysis support. Timed Rebeca can be used in a model-driven
methodology in which the designer builds an abstract model where each component is a reac-
tive object communicating through non-blocking asynchronous messages. The structure of the
model can very well represent service oriented architectures, while the computational model
matches the network infrastructure. Hence the model captures faithfully the behaviour of the
system in a distributed and asynchronous world.

Comparison with other timed models. Comparing with the well-established timed models,
like timed automata [2] and real-time Maude [18], timed Rebeca offers an actor-based syntax and
a built-in actor-based computational model, which restricts the style of modelling to an event-
based concurrent object-based paradigm. Modelling time-related features in computational
models has been studied for a long time [3, 2]; while we have no claims of improving the
expressiveness of timed models, we believe that our model is highly usable due to its actor-
based nature and Java-like syntax. The usability is due to the one to one correspondence
between the entities of the real world and the objects in the model, and the events and actions of
the real world and the computational model. Moreover, the syntax of the language is familiar
for software engineers and practitioners.

Comparison with other timed actor models. We know of a few other timed actor-based
modelling languages [20, 16, 4] that we will explain in more detail in the related work section. In
[20] a central synchronizer acts like a coordinator and enforces the real-time and synchronization
constraints (called interaction constraints). The language for the coordinated actors is briefly
proposed in [16]; however, the main focus is having reusable real-time actors without hardwired
interaction constraints. The constraints declared within the central synchronizer in this line of
work can be seen as the required global properties of a timed Rebeca model. We capture the
architecture and configuration of a system via a timed Rebeca model and then we can check
whether the global constraints are satisfied. The language primitives that we use to extend
Rebeca are consistent with the proposal in [16]. The primitives proposed in [4] are different
from ours; they introduced an await primitive where we keep the asynchronous nature of the
model.
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Analysis support. In order to analyze timed Rebeca models, we developed a tool to facilitate
their simulation. In a parallel project [11], a mapping from timed Rebeca to timed automata is
developed and UPPAAL [24] is used for model checking. The asynchronous nature of Rebeca
models causes state explosion while model checking even for small models. One solution is
using a modular approach like in [12]. Here, we selected an alternative solution as a comple-
mentary tool for analysis. Using our tool we can translate a timed Rebeca model to Erlang [6],
set the parameters which represent the environment and component variables, and run McEr-
lang [7] to simulate the model. The tool allows us to change the settings of different timing
parameters and rerun the simulation in order to investigate different scenarios, find potential
bugs and problems, and optimize the model by manipulating the settings. The parameters can
be timing constraints on the local computations (e.g., deadlines for accomplishing a requested
service), computation time for providing a service, and frequency of a periodic event. Param-
eters can also represent network configurations and delays. In our experiments we could find
timing problems that caused missing a deadline, or an unstable state in the system.

The formal semantics presented in this paper is the basis for the correct mapping from
timed Rebeca to Erlang. The detailed mapping, and the tool together with some examples can
be found at [10].

Our choice to use the actor-based programming language Erlang is also based on the idea
of covering the whole life cycle of the system in future, and of providing a refinement step for
implementing the code from our timed Rebeca model.

2 Related Work

Different approaches are used in designing formal modelling languages for real-time systems.
The model of timed automata, introduced by Alur and Dill [2], has established itself as a
classic formalism for modelling real-time systems. The theory of timed automata is a timed
extension of automata theory, using clock constraints on both locations and transitions. In many
other cases the proposed modelling languages for real-time systems are extensions of existing
languages with real-time concepts—see, for example, TCCS [25] and Real-time Maude [18].

A real-time actor model, RT-synchronizer, is proposed in [20], where a centralized syn-
chronizer is responsible for enforcing real-time relations between events. Actors are extended
with timing assumptions, and the functional behaviours of actors and the timing constraints
on patterns of actor invocation are separated. The semantics for the timed actor-based lan-
guage is given in [16]. Two positive real-valued constants, called release time and deadline, are
added to the send statement and are considered as the earliest and latest time when the message
can be invoked relative to the time that the method executing the send is invoked. In Timed
Rebeca, we have the constructs after and deadline, which are representing the same concepts,
respectively, except that they are relative to the time that the message (itself) is sent. So, it more
directly reflects the computation architecture including the network delays. In our language,
it is also possible to consider a time delay in the execution of a computation where in [16] it is
possible to specify an upper bound on the execution time of a method. While RT-synchronizer
is an abstraction mechanism for the declarative specification of timing constraints over groups
of actors, our model allows us to work at a lower level of abstraction. Using timed Rebeca,
a modeller can easily capture the functional features of a system, together with the timing
constraints for both computation and network latencies, and analyze the model from various
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points of view.
There is also some work on schedulability analysis of actors [17], but this is not applied on

a real-time actor language. Time constraints are considered separately. Recently, there have
been some studies on schedulability analysis for Rebeca models [13]. This work is based on
mapping Rebeca models to timed automata and using UPPAAL to check the schedulability of
the resulting models. Deadlines are defined for accomplishing a service and each task spends a
certain amount of time for execution. In the above-mentioned papers, modelling of time is not
incorporated in the Rebeca language.

Creol is a concurrent object-oriented language with an operational semantics written in an
actor-based style, and supported by a language interpreter in the Maude system. In [5], Creol is
extended by adding best-case and worst-case execution time for each statement, and a deadline
for each method call. In addition, an object is assigned a scheduling strategy to resolve the
nondeterminism in selecting from the enabled processes. This work is along the same lines as
the one presented in [13] and the focus is on schedulability analysis, which is carried out in a
modular way in two steps: first one models an individual object and its behavioural interface
as timed automata, and then one uses UPPAAL to check the schedulability considering the
specified execution times and the deadlines. In this work, network delays are not considered,
and the execution time is weaved together with the statements in a fine-grained way.

In [4] a timed version of Creol is presented in which the only additional syntax is read-
only access to the global clock, plus adding a data-type Time together with its accompanying
operators to the language. Timed behaviour is modelled by manipulating the Time variables
and via the await statement in the language.

3 Timed Rebeca

A Rebeca model consists of a set of reactive classes and the main program in which we declare
reactive objects, or rebecs, as instances of reactive classes. A reactive class has an argument of type
integer, which denotes the length of its message queue. The body of the reactive class includes
the declaration for its known rebecs, variables, and methods (also called message servers). Each
method body consists of the declaration of local variables and a sequence of statements, which
can be assignments, if statements, rebec creation (using the keyword new), and method calls.
Method calls are sending asynchronous messages to other rebecs (or to self) to invoke the
corresponding message server (method). Message passing is fair, and messages addressed to a
rebec are stored in its message queue. The computation takes place by taking the message from
the front of the message queue and executing the corresponding message server [22].

Timing features in an asynchronous and distributed setting. To decide on the timing prim-
itives to be added to the Rebeca syntax, we first considered the different timing features that
a modeller might need to address in a message-based, asynchronous and distributed setting.
These features (like the computation time, or periodic events) can be common in any setting.

1. Computation time: the time needed for a computation to take place.

2. Message delivery time: the time needed for a message to travel between two objects, that
depends on the network delay (and possibly other parameters).



L. Aceto at al. 5

3. Message expiration: the time within which a message is still valid. The message can be
a request or a reply to a request (a request being served).

4. Periods of occurrences of events: the time periods for periodic events.
We introduce an extension of Rebeca with real-time primitives to be able to address the

above-mentioned timing features. In timed Rebeca model, each rebec has its own local clock,
which can be considered as synchronized distributed clocks1. Methods are still executed
atomically, but we can model passing of time while executing a method. Instead of a message
queue for each rebec, we have a bag containing the messages that are sent. The timing primitives
that are added to the syntax of Rebeca are delay, now, deadline and after. Figure 1 shows the
grammar for Timed Rebeca. The delay statement models the passing of time for a rebec during
execution of a method (computation time), and now returns the local time of the rebec. The
keywords after and deadline can only be used in conjunction with a method call. Each rebec
knows about its local time and can put deadline on the messages that are sent declaring that
the message will not be valid after the deadline (modelling the message expiration). The after
primitive, attached to a message, can be used to declare a constraint on the earliest time at
which the message can be served (taken from the message bag by the receiver rebec). The
modeller may use these constraints for various purposes, such as modelling the network delay
or modelling a periodic event.

The messages that are sent are put in the message bag together with their time tag and
deadline tag. The scheduler decides which message is to be executed next based on the time
tags of the messages. The time tag of a message is the value of now when the message was sent,
with the value of the argument of the after added to it when the message is augmented with an
after. The intuition is that a message cannot be taken (served) before the time that the time tag
determines.

The progress of time is modeled locally by the delay statement. Each delay statement within
a method body increases the value of the local time (variable now) of the respective rebec by
the amount of its argument. When we reach a call statement (sending a message), we put that
message in the message bag augmented with a time tag. The local time of a rebec can also be
increased when we take a message from the bag to execute the corresponding method.

The scheduler takes a message from the message bag, executes the corresponding message
server atomically, and then takes another message. Every time the scheduler takes a message for
execution, it chooses a message with the least time tag. Before the execution of the corresponding
method starts, the local time (now) of the receiver rebec is set to the maximum value between its
current time and the time tag of the message. The current local time of each rebec is the value
of now. This value is frozen when the method execution ends until the next method of the same
rebec is taken for execution.

The arguments of after and delay are relative values, but when the corresponding messages
are put in the message bag their tags are absolute values, which are computed by adding the
relative values of the arguments to the value of the variable now of the sender rebec (where
the messages are sent). To summarize, Timed Rebeca extends Rebeca with the following four
constructs.

• Delay: delay(t), where t is a positive natural number, will increase the value of the local
clock of the respective rebec by the amount t.

1In this paper we do not address the problem of distributed clock synchronization; several options and protocols
for establishing clock synchronization in a distributed system are discussed in the literature, including [23].
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ModelF EnvVar∗ Class∗ Main EnvVarF env T 〈v〉+;
MainFmain { InstanceDcl∗ } InstanceDclF C r(〈r〉∗) : (〈c〉∗);
ClassF reactiveclass C { KnownRebecs Vars MsgSrv∗ }

KnownRebecsF knownrebecs { VarDcl∗ } VarsF statevars { VarDcl∗ } VarDclF T 〈v〉+;
MsgSrvFmsgsrv M(〈T v〉∗) { Stmt∗ }

StmtF v = e; | r = new C(〈e〉∗); | Call; | i f (e) MSt [else MSt] | delay(t); | now();
CallF r.M(〈e〉∗) [after(t)] [deadline(t)]
MStF { Stmt∗ } | Stmt

Figure 1: Abstract syntax of Timed Rebeca. Angle brackets 〈...〉 are used as meta parenthesis,
superscript + for repetition more than once, superscript ∗ for repetition zero or more times,
whereas using 〈...〉 with repetition denotes a comma separated list. Brackets [...] show being
optional. Identifiers C, T, M, v, c, and r denote class, type, method, variable, constant, and rebec
names, respectively; and e denotes an (arithmetic, boolean or nondetermistic choice) expression.

• Now: now() returns the time of the local clock of the rebec from which it is called.

• Deadline: r.m() deadline(t), where r denotes a rebec name, m denotes a method name of r
and t is a natural number, means that the message m is sent to the rebec r and is put in the
message bag. After t units of time the message is not valid any more and is purged from
the bag. Deadlines are used to model message expirations (timeouts).

• After: r.m() after(t), where r denotes a rebec name, m denotes a method name of r and
t is a natural number, means that the message m is sent to the rebec r and is put in the
message bag. The message cannot be taken from the bag before t time units have passed.
After statements can be used to model network delays in delivering a message to the
destination, and also periodic events.

Ticket Service Example We use a ticket service as a running example throughout the article.
Listing 1 shows this example written in Timed Rebeca. The ticket service model consists
of two reactive classes: Agent and TicketService. Two rebecs, ts1 and ts2, are instantiated
from the reactive class TicketService, and one rebec a is instantiated from the reactive class
Agent. The agent a is initialized by sending a message f indTicket to itself in which a message
requestTicket is sent to the ticket service ts1 or ts2 based on the parameter passed to f indTicket.
The deadline for the message requestTicket to be served is requestDeadline time units. Then,
after checkIssuedPeriod time units the agent will check if it has received a reply to its request by
sending a checkTicket message to itself, modelling a periodic event. There is no receive statement
in Rebeca, and all the computation is modeled via asynchronous message passing, so, we need
a periodic check. The attemptCount variable helps the agent to keep track of the ticket service
rebec that the request is sent to. The token variable allows the agent to keep track of which
incoming ticketIssued message is a reply to a valid request. When any of the ticket service rebecs
receives the requestTicket message, it will issue the ticket after serviceTime1 or serviceTime2 time
units, which is modelled by sending ticketIssued to the agent with the token as parameter. The
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expression ?(serviceTime1,serviceTime2) denotes a nondeterministic choice between serviceTime1
and serviceTime2 in the assignment statement. Depending on the chosen value, the ticket service
may or may not be on time for its reply.

1 env int requestDeadline, checkIssuedPeriod, retryRequestPeriod, newRequestPeriod, serviceTime1,
serviceTime2;

2

3 reactiveclass Agent {
4 knownrebecs { TicketService ts1; TicketService ts2; }
5 statevars { int attemptCount; boolean ticketIssued; int token; }
6 msgsrv initial() { self.findTicket(ts1); } // initialize system, check 1st ticket service
7 msgsrv findTicket(TicketService ts) {
8 attemptCount += 1; token += 1;

9 ts.requestTicket(token) deadline(requestDeadline); // send request to the TicketService
10 self.checkTicket() after(checkIssuedPeriod); // check if the request is replied
11 }

12 msgsrv ticketIssued(int tok) { if (token == tok) { ticketIssued = true; } }
13 msgsrv checkTicket() {
14 if (!ticketIssued && attemptCount == 1) { // no ticket from 1st service,

15 self.findTicket(ts2); // try the second TicketService

16 } else if (!ticketIssued && attemptCount == 2) { // no ticket from 2nd service,
17 self.retry() after(retryRequestPeriod); // restart from the first TicketService

18 } else if (ticketIssued) { // the second TicketService replied,

19 ticketIssued = false;
20 self.retry() after(newRequestPeriod); // new request by a customer

21 }

22 }

23 msgsrv retry() {
24 attemptCount = 0; self.findTicket(ts1); // restart from the first TicketService

25 }

26 }

27

28 reactiveclass TicketService {
29 knownrebecs { Agent a; }
30 msgsrv initial() { }
31 msgsrv requestTicket(int token) {
32 int wait = ?(serviceTime1,serviceTime2); // the ticket service sends the reply

33 delay(wait); // after a non-determinstic delay of

34 a.ticketIssued(token); // either serviceTime1 or serviceTime2

35 }

36 }

37

38 main {
39 Agent a(ts1, ts2):(); // instantiate agent, with two known rebecs

40 TicketService ts1(a):(); // instantiate 1st and 2nd ticket services, with

41 TicketService ts2(a):(); // the agent as their known rebecs

42 }

Listing 1: A Timed Rebeca model of the ticket service example

3.1 Structural Operational Semantics for Timed Rebeca

In this section we provide an SOS semantics for Timed Rebeca in the style of Plotkin [19]. The
behaviour of Timed Rebeca programs is described by means of the transition relation → that
describes the evolution of the system.

The states of the system are pairs (Env,B), where Env is a finite set of environments and B
is a bag of messages. For each rebec A of the program there is an environment σA contained
in Env, that is a function that maps variables to their values. The environment σA represents
the private store of the rebec A. Besides the user-defined variables, environments also contain
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the value for the special variables self, the name of the rebec, now, the current time, and sender,
which keeps track of the rebec that invoked the method that is currently being executed. The
environment σA also maps every method name of A to its body.

The bag contains an unordered collection of messages. Each message is a tuple of the
form (Ai,m(v),A j,TT,DL). Intuitively, such a tuple says that at time TT the sender A j sent the
message to the rebec Ai asking it to execute its method m with actual parameters v. Moreover
this message expires at time DL.

The system transition relation→ is defined by the rule scheduler:

(scheduler)
(σAi (m),σAi [now = max(TT,σAi (now)), [arg = v], sender = A j], Env, B) τ

→ (σ′Ai
, Env′,B′)

({σAi }∪Env, {(Ai,m(v),A j,TT,DL)}∪B)→ ({σ′Ai
}∪Env′, B′)

where σAi is not contained in Env, (Ai,m(v),A j,TT,DL) < B, σAi(now) ≤DL and TT = min(B). The
scheduler rule allows the system to progress by picking up messages from the bag and executing
the corresponding methods. The third side condition of the rule, namely σAi(now) ≤DL, checks
whether the selected message carries an expired deadline, in which case the condition is not
satisfied and the message cannot be picked. The last side condition is the predicate TT = min(B),
which is satisfied whenever the time tag TT is the smallest time tag of all the messages for all
the rebecs Ai in the bag B. The premise executes the method m, as described by the transition
relation τ

→ , which will be defined below. The method body is looked up in the environment of
Ai and is executed in the environment of Ai modified as follows: (1) The variable sender is set to
the sender of the message. (2) In executing the method m, the formal parameters arg are set to
the values of the actual parameters v. Methods of arity n are supposed to have arg1,arg2, . . . ,argn
as formal parameters. This is without loss of generality since such a change of variable names
can be performed in a pre-processing step for any program. (3) The variable now is set to the
maximum between the current time of the rebec and the time tag of the selected message.

The execution of the methods of rebec Ai may change the private store of the rebec Ai, the
bag B by adding messages to it and the list of environments by creating new rebecs through new
statements. Once a method is executed to completion, the resulting bag and list of environments
are used to continue the progress of the whole system.

The transition relation τ
→ describes the execution of methods in the style of natural seman-

tics [15]. (See Figure 2 for selected rules. The full set of rules may be found in Appendix A.)
Since in this kind of semantics the whole computation of a method is performed in a single
step, this choice perfectly reflects the atomic execution of methods underlying the semantics of
the Rebeca language. The general form of this type of transition is (S,σ,Env,B) τ

→ (σ′,Env′,B′).
A single step of τ

→ consumes all the code S and provides the value resulting from its execution.
Carrying the bag B is important because new messages may be added to it during the execution
of a statement S. Also Env is required because new statements create new rebecs and may
therefore add new environments to it. In the semantics, the local environment σ is separated
from the environment list Env for the sake of clarity. The result of the execution of the method
thus amounts to the modified private store σ′, the new list of environments Env′ and the new
bag B′.

The rules for assignment, conditional statement and sequential composition are standard.
The rules for the timing primitives deserve some explanation.

• Rule msg describes the effect of method invocation statements. For the sake of brevity,
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(msg) (varname.m(v) a f ter(d) deadline(DL),σ,Env,B)
τ
→ (σ,Env, {(σ(varname),m(eval(v,σ)),σ(sel f ),σ(now) + d,σ(now) + DL)}∪B)

(delay) (delay(d),σ,Env,B) τ
→ (σ[now = σ(now) + d],Env,B)

(create) (varname = new O(v),σ,Env,B)
τ
→ (σ[varname = A], {σA[now = σ(now), self = A]}∪Env, {(A, initial(eval(v,σ)),σ(sel f )),σ(now),+∞)}∪B)

Figure 2: Selected Method-Execution Transition Rules. In rule create, the rebec name A should
not appear in the range of the environment σ. The function eval evaluates expressions in a given
environment in the expected way. In each rule, we assume that σ is not contained in Env.

we limit ourselves to presenting the rule for method invocation statements that involve
both the after and deadline keywords. The semantics of instances of that statement without
those keywords can be handled as special cases of that rule by setting the argument of
after to zero and that of deadline to +∞, meaning that the message never expires. Method
invocation statements put a new message in the bag, taking care of properly setting its
fields. In particular the time tag for the message is the current local time, which is the
value of the variable now, plus the number d that is the parameter of the after keyword.

• Delay statements change the private variable now for the considered rebec.

Finally, the creation of new rebecs is handled by the rule create. A fresh name A is used to
identify the newly created rebec and is assigned to varname. A new environment σA is added to
the list of environments. At creation time, σA is set to have its method names associated to their
code. A message is put in the bag in order to execute the initial method of the newly created
rebec.

4 Mapping from Timed Rebeca to Erlang

In this section, we present a translation from the fragment of Timed Rebeca without rebec
creation to Erlang (for a more extended explanation see [10]). The motivation for translating
Timed Rebeca models to Erlang code is to be able to use McErlang [7] to run experiments on
the models. This translation also yields a first implementation of Timed Rebeca.

McErlang is a model-checking tool written in Erlang to verify distributed programs written
in Erlang. It supports Erlang datatypes, process communication, fault detection and fault
tolerance and the Open Telecom Platform (OTP) library, which is used by most Erlang programs.
The verification methods range from complete state-based exploration to simulation, with
specifications written as LTL formulae or hand-coded runtime monitors. This paper focuses
on simulation since model checking with real-time semantics is not yet offered by McErlang.
Note, however, that our translation opens the possibility of model checking (untimed) Rebeca
models using McErlang, which is not the subject of this paper.

Erlang Primer Erlang is a dynamically-typed general-purpose programming language, which
was designed for the implementation of distributed, real-time and fault-tolerant applications.
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1 receive
2 Pattern1 when Guard1 -> Expr1;
3 Pattern2 when Guard2 -> Expr2;
4 ...

5 after
6 Time -> Expr
7 end

Listing 2: Syntax of a receive with timeout.

Originally, Erlang was mostly used for telephony applications such as switches. Its concurrency
model is based on the actor model.

Erlang has few concurrency and timing primitives:

• Pid = spawn(Fun) creates a new process that evaluates the given function Fun in parallel
with the process that invoked spawn.

• Pid !Msg sends the given message Msg to the process with the identifier Pid.

• receive ... end receives a message that has been sent to a process; message discrimination
is based on pattern matching.

• after is used in conjunction with a receive and is followed by a timeout block as shown in
Listing 2, after the specified time (deadline for receiving the required pattern) the process
executes the timeout block

• erlang:now() returns the current time of the process

When a process reaches a receive expression it looks in the queue and takes a message that
matches the pattern if the corresponding guard is true. A guard is a boolean expression, which
can include the variables of the same process. The process looks in the queue each time a
message arrives until the timeout occurs.

Mapping The abstract syntax for a fragment of Erlang that is required to present the translation
is shown in Figure 3. Table 1 offers an overview of how a construct in one language relates to
one in the other. We discuss the general principles behind our translation in more detail below.

Reactive classes are translated into three functions, each representing a possible behaviour
of an Erlang process: 1) the process waits to get references to known rebecs, 2) the process
reads the initial message from the queue and executes it, 3) the process reads messages from
the queue and executes them. Once processes reach the last function they enter a loop. Erlang
pseudocode for the reactive class TicketService in the Rebeca model in Listing 1 is shown in
Listing 3.

A message server is translated into a match expression (see Figure 3), which is used inside
receive ... end. In Listing 3, requestTicket is the pattern that is matched on, and the body of the
message server is mapped to the corresponding expression.

Message send is implemented depending on whether after is used. If there is no after,
the message is sent like a regular message using the ! operator, as shown on line 4 in Listing
4. However, if the keyword after is present a new process is spawned which sleeps for the
specified amount of time before sending the message as described before. Setting a deadline
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ProgramF Function∗ FunctionF v(Pattern∗)→ e
ExprF e1 ope e2 | e(〈e〉∗) | case e of Match end | receive Match [after Time → e] end
| if 〈Match〉∗end | e1 ! e2 | e1 , e2 | Pattern = e | BasicValue | v | {〈e〉∗} | [〈e〉∗]

MatchF Pattern when Guard→ e
PatternF v | BasicValue | {〈Pattern〉∗} | [〈Pattern〉∗] TimeF int

ValueF BasicValue | {〈Value〉∗} | [〈Value〉∗] BasicValueF atom | number | pid | fid
GuardF g1 opg g2 | BasicValue | v | g(〈g〉∗) | {〈g〉∗} | [〈g〉∗]

Figure 3: Abstract syntax of a relevant subset of Erlang. Angle brackets 〈...〉 are used as meta
parenthesis, superscript + for repetition more than once, superscript * for repetition zero or
more times, whereas using 〈...〉 with repetition denotes a comma separated list. Identifiers v, p
and g denote variable names, patterns and guards, respectively, and e denotes an expression.

Timed Rebeca Erlang
Model → A set of processes

Reactive classes → A process whose behaviour consists of three functions
Known rebecs → Record of variables
State variables → Record of variables

Message server → A match in a receive expression
Local variables → Record of variables
Message send → Message send expression

Message send w/after → Message send expression in the timeout block of a receive
with an empty pattern, the timeout block is always executed,
sending the message after the specified time

Message send w/deadline → Message send expression with the deadline as parameter
Delay statement → Empty receive with a timeout
Now expression → System time

Assignment → Record update
If statement → If expression

Nondeterministic selection → Random selection in the simulation tool

Table 1: Structure of the mapping from Timed Rebeca to Erlang.
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1 ticketService() ->
2 receive
3 % wait for a message with a set of known rebecs

4 {Agent} ->
5 % proceed to the next behaviour

6 ticketService(#ticketService_knownrebecs{agent=Agent})
7 end.
8 ticketService(KnownRebecs) ->
9 receive

10 % wait for the ’initial’ message

11 initial ->
12 % process message ’initial’ and proceed to the next behaviour

13 ticketService(KnownRebecs, #ticketService_statevars{})
14 end.
15 ticketService(KnownRebecs, StateVars) ->
16 receive
17 % wait for each message servers

18 requestTicket ->
19 % process message ’requestTicket’ and loop

20 ticketService(KnownRebecs, StateVars)

21 end.

Listing 3: Pseudo Erlang code capturing the behaviour of the ticketService process.

1 Sender = self(),
2 spawn(fun() ->
3 receive after 15 ->
4 TicketService ! {{Sender, now(), inf}, requestTicket}
5 end
6 end)

Listing 4: Example of a message send after 15 time units in Erlang.

for the delivery of a message is possible by changing the value inf, which denotes no deadline
(as shown on line 3 in Listing 4), to an absolute point in time. Messages are tagged with the
time at which they were sent. For the simulation we use the system clock to find out the current
time by calling the Erlang function now().

Moreover, since message servers can reply to the sender of the message, we need to take
care of setting the sender as part of the message as seen on line 4 in Listing 4.

As there is no pattern to match with, the delay statement is implemented as a receive
consisting of just a timeout that makes the process wait for a certain amount of time. For
example, delay(10) is translated to receive after 10 ->ok end.

The deadline of each message is checked right before the body of the message server is
executed. The current time is compared with the deadline of the message to see if the deadline
has expired and, if so, the message is purged.
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Request
deadline

Check issued
period

Retry request
period

New request
period

Service
time 1

Service
time 2

Result

2 1 1 1 3,4 7 Not issued
2 2 1 1 4 7 Not issued
2 2 1 1 3 7 Ticket issued

Table 2: Experimental simulation results for ticket service.

5 Simulation of Timed Rebeca Using McErlang

In this section, we present experimental results for two case studies. The first case study is the
ticket service model displayed in Listing 1 and the second is a model of a sensor network. In
each case we run a simulation for 30 minutes or until a runtime monitor fails, which means that
an erroneous state has been reached. The simulations are run in a setting in which a time unit
is 1000 ms.

Ticket Service The ticket service model is described in Section 3. For each simulation, we
change one of the following parameters: the amount of time that is allowed to pass before a
request is processed, the time that passes before agent checks if he has been issued a ticket,
the amount of time that passes before agent tries the next ticket service if he did not receive a
ticket, the amount of time that passes before agent restarts the ticket requests in case neither
ticket service issued a ticket and two different service times, which are non-deterministically
chosen as delay time in a ticket service and model the processing time for a request. Table 5
shows different settings of those parameters for which the ticket services never issue a ticket
to the agent because of tight deadlines, as well as settings for which a ticket is issued during a
simulation of the model.

Sensor Network We model a simple sensor network using Timed Rebeca. (See Listing 5 in
Appendix B for the complete description of the model.) A distributed sensor network is set
up to monitor levels of toxic gasses. The sensor rebecs (sensor0 and sensor1), announce the
measured value to the admin node (admin rebec) in the network. If the admin node receives
reports of dangerous gas levels, it immediately notifies the scientist (scientist rebec) on the
scene about it. If the scientist does not acknowledge the notification within a given time frame,
the admin node sends a request to the rescue team (rescue rebec) to look for the scientist. The
rescue team has a limited amount of time units to reach the scientist and save him.

The rebecs sensor0 and sensor1will periodically read the gas-level measurement, modelled
as a non-deterministic selection between GAS_LOW and GAS_HIGH, and send their values to admin.
The admin continually checks, and acts upon, the sensor values it has received. When the admin
node receives a report of a reading that is life threatening for the scientist (GAS_HIGH), it
notifies him and waits for a limited amount of time units for an acknowledgement. The rescue
rebec represents a rescue team that is sent off, should the scientist not acknowledge the
message from the admin in time. We model the response speed of the rescue team with a
non-deterministic delay of 0 or 1 time units. The admin keeps track of the deadlines for the
scientist and the rescue team as follows:

• the scientistmust acknowledge that he is aware of a dangerous gas-level reading before
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Network
delay

Admin
period

Sensor 0
period

Sensor 1
period

Scientist
deadline

Rescue
deadline

Result

1 4 2 3 2 3 Mission failed
1 4 2 3 2 4 Mission success
2 1 1 1 4 5,6,7 Mission failed
2 4 1 1 4 7 Mission success

Table 3: Experimental simulation results for sensor network.

scientistDeadline time units have passed;

• the rescue team must have reached the scientistwithin rescueDeadline time units.

Otherwise we consider the mission failed.
The model can be parameterized over the values of network delay, admin sensor-read

period, sensor0 read period, sensor1 read period, scientist reply deadline and rescue-team
reply deadline, as shown in Table 5. In that table, we can see two different cases in which we
go from mission failure to mission success between simulations. In the first scenario, we go
from mission failure to success as we increase the rescue deadline, as expected. In the second
scenario, we changed the parameters to model a faster sensor update and we observed mission
failure. In this scenario, increasing the rescue deadline further (from 5 to 7) is insufficient. Upon
closer inspection, we observe that our model fails to cope with the rapid sensor updates and
admin responses because it enters an unstable state. The admin node initiates a new rescue
mission while another is still ongoing, eventually resulting in mission failure. This reflects a
design flaw in the model for frequent updates that can be solved by keeping track of an ongoing
rescue mission in the model. Alternatively, increasing the value of admin sensor-read period
above half the rescue deadline eliminates the flaw and the simulation is successful again.

6 Future Work

The work reported in this paper paves the way to several interesting avenues for future work.
In particular, we have already started modelling larger real-world case studies and analyzing
them using our tool. We plan to explore different approaches for model checking Timed Rebeca
models. It is worth noting that the translation from Timed Rebeca to Erlang immediately
opens the possibility of model checking untimed Rebeca models using McErlang. This adds
yet another component to the verification toolbox for Rebeca, whose applicability needs to be
analyzed via a series of benchmark examples. As mentioned in the paper, McErlang supports
the notion of time only for simulation and not in model checking, and therefore cannot be used
as is for model checking Timed Rebeca models. We plan to explore different ways in which
McErlang can be used for model checking Timed Rebeca. One possible solution is to store the
local time of each process and write a custom-made scheduler in McErlang that simulates the
way the Timed Rebeca scheduler operates. The formal semantics for Timed Rebeca presented
in this paper is also used in another parallel line of work [11]. The aim of that study is to map
Timed Rebeca to timed automata [2] in order to use UPPAAL [24] for model checking Timed
Rebeca models. The translation from Timed Rebeca to timed automata will be integrated in our
tool suite. We are also working on a translation of Timed Rebeca into (Real-time) Maude. This
alternative translation would allow designers to use the analysis tools supported by Maude
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in the verification and validation of Timed Rebeca models. Our long-term goal is to have a
tool suite for modelling, executing, simulating, and model checking asynchronous object-based
systems using Timed Rebeca.
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A Method-Execution Transition Rules

(msg) (varname.m(v) a f ter(d) deadline(DL),σ,Env,B)
τ
→ (σ,Env, {(σ(varname),m(eval(v,σ)),σ(sel f ),σ(now) + d,σ(now) + DL)}∪B)

(delay) (delay(d),σ,Env,B) τ
→ (σ[now = σ(now) + d],Env,B)

(assign) (x = e,σ,Env,B) τ
→ (σ[x = eval(e,σ)],Env,B)

(create) (varname = new O(v),σ,Env,B)
τ
→ (σ[varname = A], {σA[now = σ(now), self = A]}∪Env, {(A, initial(eval(v,σ)),σ(sel f )),σ(now),+∞)}∪B)

(cond1)
eval(e,σ) = true (S1,σ,Env,B) τ

→ (σ′,Env′,B′)

(i f (e) then S1 else S2,σ,Env,B) τ
→ (σ′,Env′,B′)

(cond2)
eval(e,σ) = f alse (S2,σ,Env,B) τ

→ (σ′,Env′,B′)

(i f (e) then S1 else S2, σ,Env,B) τ
→ (σ′,Env′,B′)

(seq)
(S1,σ,Env,B) τ

→ (σ′,Env′,B′), (S2,σ′,Env′,B′) τ
→ (σ′′,Env′′,B′′)

(S1;S2,σ,Env,B) τ
→ (σ′′,Env′′,B′′)

Figure 4: The Method-Execution Transitions Rules. In rule create, the rebec name A should not
appear in the range of the environment σ. The function eval evaluates expressions in a given
environment in the expected way. In each rule, we assume that σ is not contained in Env.

B Rebeca Model for the Sensor Network

1 env int netDelay;
2 env int adminCheckDelay;
3 env int sensor0period;
4 env int sensor1period;
5 env int scientistDeadline;
6 env int rescueDeadline;
7

8 reactiveclass Sensor {
9 knownrebecs {

10 Admin admin;

11 }

12

13 statevars {
14 int period;
15 }
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16

17 msgsrv initial(int myPeriod) {
18 period = myPeriod;

19 self.doReport();
20 }

21

22 msgsrv doReport() {
23 int value;
24 value = ?(2, 4); // 2=safe gas levels, 4=danger gas levels

25 admin.report(value) after(netDelay);
26 self.doReport() after(period);
27 }

28 }

29

30 reactiveclass Scientist {
31 knownrebecs {
32 Admin admin;

33 }

34

35 msgsrv initial() {}
36

37 msgsrv abortPlan() {
38 admin.ack() after(netDelay);
39 }

40 }

41

42 reactiveclass Rescue {
43 knownrebecs {
44 Admin admin;

45 }

46

47 msgsrv initial() {}
48

49 msgsrv go() {
50 int msgDeadline = now() + (rescueDeadline-netDelay);
51 int excessiveDelay = ?(0, 1); // unexpected obstacle might occur during rescue
52 delay(excessiveDelay);
53 admin.rescueReach() after(netDelay) deadline(msgDeadline);
54 }

55 }

56

57 reactiveclass Admin {
58 knownrebecs {
59 Sensor sensor0;

60 Sensor sensor1;

61 Scientist scientist;

62 Rescue rescue;

63 }

64

65 statevars {
66 boolean reported0;
67 boolean reported1;
68 int sensorValue0;
69 int sensorValue1;
70 boolean sensorFailure;
71 boolean scientistAck;
72 boolean scientistReached;
73 boolean scientistDead;
74 }

75

76 msgsrv initial() {
77 self.checkSensors();
78 }

79

80 msgsrv report(int value) {
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81 if (sender == sensor0) {
82 reported0 = true;
83 sensorValue0 = value;

84 } else {
85 reported1 = true;
86 sensorValue1 = value;

87 }

88 }

89

90 msgsrv rescueReach() {
91 scientistReached = true;
92 }

93

94 msgsrv checkSensors() {
95 if (reported0) reported0 = false;
96 else sensorFailure = true;
97

98 if (reported1) reported1 = false;
99 else sensorFailure = true;

100

101 boolean danger = false;
102 if (sensorValue0 > 3) danger = true;
103 if (sensorValue1 > 3) danger = true;
104

105 if (danger) {
106 scientist.abortPlan() after(netDelay);
107 self.checkScientistAck() after(scientistDeadline); // deadline for the scientist to answer
108 }

109

110 self.checkSensors() after(adminCheckDelay);
111 }

112

113 msgsrv checkRescue() {
114 if (!scientistReached) {
115 scientistDead = true; // scientist is dead
116 } else {
117 scientistReached = false;
118 }

119 }

120

121 msgsrv ack() {
122 scientistAck = true;
123 }

124

125 msgsrv checkScientistAck() {
126 if (!scientistAck) {
127 rescue.go() after(netDelay);
128 self.checkRescue() after(rescueDeadline);
129 }

130 scientistAck = false;
131 }

132 }

133

134 main {
135 Sensor sensor0(admin):(sensor0period);

136 Sensor sensor1(admin):(sensor1period);

137 Scientist scientist(admin):();

138 Rescue rescue(admin):();

139 Admin admin(sensor0, sensor1, scientist, rescue):();

140 }

Listing 5: A Timed Rebeca model of the sensor network example


	Introduction
	Related Work
	Timed Rebeca
	Structural Operational Semantics for Timed Rebeca

	Mapping from Timed Rebeca to Erlang
	Simulation of Timed Rebeca Using McErlang
	Future Work
	Method-Execution Transition Rules
	Rebeca Model for the Sensor Network

