# Non-Strongly Stable Orders and Simulation Relations

Ignacio Fábregas David de Frutos Escrig Miguel Palomino

Departamento de Sistemas Informáticos y Computación, UCM

ICE-TCS Workshop on Logic and Concurrency (Reykjavik, September 15th, 2010)

### Motivation

- We present two notions of simulation (those in Ignacio's talk) which can be defined as coalgebraic simulations.
  - Covariant-contravariant simulation: I/O Automata.
  - Conformance simulation: reducing non-determinism.
- In order to define them in a proper way we need an order with good enough properties.

# Coalgebraic Simulations

- Generalize coalgebraic bisimulations by means of arbitrary preorder relations.
- Very general notion; perhaps, too general: the induced similarity relation needs not be transitive.
- In [HughesJacobs04] stability is also required, which is guaranted by a stronger condition ("right-stability").
  - We have shown that it induces a "natural" direction in the induced simulation order.
  - However, the symmetric "left-stability" also guarentees stability.
  - Other, more ellaborated "combinations" of right and left stable orders also do the work.

### Coalgebras

- For a functor F, an F-coalgebra is a function  $c: X \longrightarrow FX$ , so that  $x \in X$  is a state and c(x) the set of succesors of x.
- Choosing F we can obtain different structures:
  - $\triangleright \mathcal{P}(X)^A$  for labelled transitions systems.

- \*  $X = \{x_1, x_2, x_3\}.$ \*  $c: X \longrightarrow \mathcal{P}(X)^{\{a_1, a_2\}}$   $c(x_1): \{a_1, a_2\} \longrightarrow \mathcal{P}(X)$ \*  $c: X \longrightarrow \mathcal{P}(X)^{\{a_1, a_2\}}$   $c(x_1)(a_1) = \{x_3\}$ \*  $c(x_1)(a_2) = \{x_1\}$
- $ightharpoonup \mathcal{P}(AP) \times \mathcal{P}(X)$  for Kripke structures.

### **Bisimulations**

• A functor  $F : \mathbf{Sets} \to \mathbf{Sets}$  can be lifted to  $Rel(F) : \mathbf{Rel} \to \mathbf{Rel}$ :

$$Rel(F)(R) = \{\langle u, v \rangle \in FX_1 \times FX_2 \mid \exists w \in F(R).F(r_1)(w) = u, F(r_2)(w) = v\}$$

If  $R \subseteq X \times Y$  then  $Rel(F)(R) \subseteq FX \times FY$ .

• A bisimulation for  $c: X \longrightarrow FX$  and  $d: Y \longrightarrow FY$  is a relation  $R \subseteq X \times Y$  "closed under c and d":

if 
$$(x, y) \in R$$
 then  $(c(x), d(y)) \in \text{Rel}(F)(R)$ 

If states x and y are related, so are their successors c(x) and d(y).

# Example: labelled transition systems

• Unfolding Rel $(\mathcal{P}(id)^A)(R) \subseteq \mathcal{P}(X)^A \times \mathcal{P}(Y)^A$ :

$$Rel(\mathcal{P}(id)^{A})(R) = \{(f,g) \mid \text{for all } a \in A, \\ \forall u \in f(a). \exists v \in g(a). uRv \land \\ \forall v \in g(a). \exists u \in f(a). uRv \}\}$$



$$c(x_1)(a) = \{x_1, x_2\}$$
  
 $c(x_1)(b) = \{x_3\}$ 

$$d(y_2)(a) = \{y_2\}$$
  
 $d(y_2)(b) = \{y_1\}$ 

- $R = \{(x_1, y_2), (x_2, y_2), (x_3, y_1)\}.$
- $(c(x_1), d(y_2)) \in \text{Rel}(F)(R)$  but  $(c(x_2), d(y_1)) \notin \text{Rel}(F)(R)$ .

#### **Simulations**

- An order  $\sqsubseteq$  on F is given by a collection  $\sqsubseteq_X \subseteq FX \times FX$  that is functorial (roughly, it must be preserved by renaming).
- A <u>□-simulation</u> for c: X → FX and d: Y → FY is a relation
   R ⊆ X × Y such that

if 
$$(x, y) \in R$$
 then  $(c(x), d(y)) \in \text{Rel}_{\sqsubseteq}(F)(R)$ ,

that is,

$$c(x) \sqsubseteq_X u \operatorname{Rel}(F)(R) v \sqsubseteq_Y d(y),$$

for some u and v.

Bisimulations are simulations for the identity order.

# **Stability**

- $\sqsubseteq$  for F is stable if  $Rel_{\sqsubseteq}(F)$  commutes with substitution:
  - Given  $f: X \longrightarrow Z$  and  $g: Y \longrightarrow W$ ,

$$\operatorname{Rel}_{\sqsubseteq}(F)((f\times g)^{-1}(R)) \ = \ (Ff\times Fg)^{-1}(\operatorname{Rel}_{\sqsubseteq}(F)(R))$$

- Stable orders give rise to nice simulations.
- $\sqsubseteq$  is right-stable if  $(id \times Ff)^{-1} \sqsubseteq_Y \subseteq \coprod_{Ff \times id} \sqsubseteq_X$ .
- Right-stability is equivalent to

  - $Rel(F)(R) \circ \sqsubseteq_X \subseteq \sqsubseteq_Y \circ Rel(F)(R)$ .
- If F is right-stable,

$$\sqsubseteq_{\mathsf{Y}} \circ \operatorname{Rel}(F)(R) \circ \sqsubseteq_{\mathsf{X}} = \sqsubseteq_{\mathsf{Y}} \circ \operatorname{Rel}(F)(R)$$

### Plain Simulation

- Labelled transition systems (lts) are coalgebras for the functor  $FX = \mathcal{P}(X)^A$ .
- "Classical" simulations coincide with coalgebraic simulations for the order ⊂:
  - ▶ given  $f, g \in FX = \mathcal{P}(X)^A$ , that is,  $f, g : A \longrightarrow \mathcal{P}(X)$  $f \sqsubseteq g$  if for all  $a \in A, f(a) \subseteq g(a)$ .
- It is right-stable.

#### Plain Simulation

- As a consequence of the right-stability ⊆-simulations can be characterized as the (⊆<sub>Y</sub> ∘ Rel(F)(R))-coalgebras.
  - ▶ The use of  $\subseteq_X$  at the lhs can be replaced by that of  $\subseteq_Y$  at the rhs:
    - $\subseteq_X$  "adds new successors to c(x)".
    - $\subseteq_Y$  "removes successors of d(y)".
    - If q simulates p, by removing the exceeding part of q we obtain q"
       "bisimilar" to p.

$$p \operatorname{Rel}(F)(R) q'' \subseteq q$$

### **Anti-simulations**

• Anti-simulations are  $\supseteq$ -simulations for  $FX = \mathcal{P}(X)^A$ , that is,

$$f \sqsubseteq g \Leftrightarrow f(a) \supseteq g(a)$$
 for all  $a \in A$ .

- c "simulates" d if and only if d "is simulated by" c.
- The order ⊇ is not right-stable.
- However, it is stable.

# Left-stability

• F with  $\sqsubseteq$  is left-stable if for all  $f: X \longrightarrow Y$ ,

$$(Ff \times id)^{-1} \sqsubseteq_{Y} \subseteq \coprod_{id \times Ff} \sqsubseteq_{X}.$$

- Anti-simulation is left-stable.
- F with  $\sqsubseteq$  is stable iff it is stable with the inverse order  $\sqsubseteq^{op}$ .

# Relating (Trivially) Left-stable and Right-stable Orders

- An order □ is left-stable iff □<sup>op</sup> is right-stable.
  - Both right-stability and left-stability give a natural direction to simulation relations.
- Left-stable orders have the same structural properties as right-stable ones.
  - ► ⊆-similarity is transitive, etc.
- The composition of right (resp. left)-stable orders gives us a new right (resp. left)-stable order.

### Covariant-contravariant simulations

- Given an alphabet Act, we will consider a partition {Act<sup>r</sup>, Act<sup>l</sup>, Act<sup>bi</sup>} of Act.
- An (Act<sup>r</sup>, Act<sup>l</sup>)-simulation for c : X → P(X)<sup>Act</sup> and
   d : Y → P(Y)<sup>Act</sup> is a relation S such that ∀(x, y) ∈ S:
  - ▶  $\forall a \in Act^r \cup Act^{bi}$ ,  $\forall x \xrightarrow{a} x' \exists y \xrightarrow{a} y'$  with  $(x', y') \in S$ .
  - ▶  $\forall a \in Act^l \cup Act^{bi}$ ,  $\forall y \xrightarrow{a} y' \exists x \xrightarrow{a} x'$  with  $(x', y') \in S$ .

### Covariant-contravariant simulations

- $(Act^r, Act^l)$ -simulations can be defined as the coalgebraic simulations for the order  $_{Act^r} \sqsubseteq_{Act^l} \subseteq \mathcal{P}(X)^A \times \mathcal{P}(X)^A$ .
- If  $f, g : Act \longrightarrow \mathcal{P}(X)$ , then  $f_{Act'} \sqsubseteq_{Act'} g \Leftrightarrow :$ 
  - ▶ for all  $a \in Act^r \cup Act^{bi}$ ,  $f(a) \subseteq g(a)$ , and
  - ▶ for all  $a \in Act^l \cup Act^{bi}$ ,  $f(a) \supseteq g(a)$ .
- Act<sup>r</sup> ⊑Act<sup>l</sup> is stable.
  - It can be "decomposed" as a product of both right-stable and left-stable orders.
  - However, it is neither right-stable nor left-stable.

### Conformance simulations

 They behave as plain simulations allowing the extension of the set of actions offered by a process:

$$a < a + b$$

 But a process can also be "improved" by reducing the nondeterminism in it.

$$ap + aq < ap$$

- A **conformance simulation** between  $c: X \longrightarrow \mathcal{P}(X)^A$  and  $d: Y \longrightarrow \mathcal{P}(Y)^A$ , is a relation R such that if pRq then
  - $\qquad \qquad \forall a \in A, \ p \stackrel{a}{\longrightarrow} \Rightarrow q \stackrel{a}{\longrightarrow}.$
  - $\forall a \in A \ (q \stackrel{a}{\longrightarrow} q' \land p \stackrel{a}{\longrightarrow}) \Rightarrow p \stackrel{a}{\longrightarrow} p' \ \text{and} \ p'Rq'.$

### Conformance simulations

- Conformance simulations can be defined as the coalgebraic simulations for the order  $\sqsubseteq^{Conf} \subseteq \mathcal{P}(X)^A \times \mathcal{P}(X)^A$ .
- If  $f, g : A \longrightarrow \mathcal{P}X$ , then  $f \sqsubseteq_X^{Conf} g \Leftrightarrow$ 
  - ▶ Either  $f(a) = \emptyset$ , or
  - $f(a) \supseteq g(a)$  and  $g(a) \neq \emptyset$ .
- □<sup>Conf</sup> is stable.
  - However, it is neither right-stable nor left-stable.

### Side stable orders

- In the proof of stability of the order for covariant-contravariant simulations, each subset of the partition of Act is dealt with separately.
- An order 

  defined over F<sup>A</sup> may be split into a family of orders 

  over F.
- An order 

   — over a functor F<sup>A</sup> is action-distributive if there exists a family of orders 

   — on F such that:

$$f \sqsubseteq g \iff f(a) \sqsubseteq^a g(a)$$

for all  $a \in A$ . We write  $\sqsubseteq = \prod_{a \in A} \sqsubseteq^a$ .

#### Side stable orders

- A side stable order is an action-distributive order such that each component is either right-stable or left-stable.
- If  $\sqsubseteq = \prod_{a \in A} \sqsubseteq^a$  and each  $\sqsubseteq^a$  is stable, then  $\sqsubseteq$  is also stable.
  - Side stable orders are stable.
- By separating the right and the left-stable components we obtain  $\sqsubseteq = (\sqsubseteq^{\bar{r}} \cup \sqsubseteq^{\bar{l}})^*$ .
- The covariant-contravariant order  $Act^r \sqsubseteq_{Act^l}$  is side stable.

# Composition of Right-stable and Left-stable Orders

- Moreover, the coalgebraic simulations for  $\sqsubseteq = \sqsubseteq^r \circ \sqsubseteq^l$  can be characterized as the  $(\sqsubseteq^r \circ \operatorname{Rel}(F)(R) \circ \sqsubseteq^l)$ -coalgebras.

# **Logical Characterizations**

- We are interested in finding modal logics that characterize these two notions of simulations.
- A first approach is to build them from scratch taking, for example, plain simulations as models.
- A second way is to follow the general categorical constructions developed by Corina Cîrstea.

# Logical Characterizations: the Categorical Way

- First, the adequate order has to be identified. Actually, Cîrstea's construction follows an alternative presentation of coalgebraic simulations.
- The language of the logic is the initial algebra of a suitable functor.
- The "semantics" of the logic is defined by means of another functor.
- Under certain conditions (a colimit needs to exist), the "semantics" induces a logic that characterizes similarity for the simulation.
- We were able to check that the logics obtained for our simulations using these two methods coincide.

# **Summary**

- Two interesting notions of coalgebraic simulations which are not strongly stable.
  - ▶ Both can be factorized into the composition of a right and a left-stable component, and so are proved to be stable.
  - Witness that "strong" stability is, well, too strong.
- Right-stability is an assymetric property.
  - We can use it to get a natural orientation for the simulation orders.
  - Its dualization leads to left-stability, with the same good properties.
  - ▶ By combining both right-stable and left-stable orders in several ways we can still preserve stability.
- These simulations can be endowed with a modal logic that characterizes them.
  - Ad-hoc manner.
  - Categorically.