Non-Strongly Stable Orders and Simulation Relations

Ignacio Fábregas David de Frutos Escrig Miguel Palomino

Departamento de Sistemas Informáticos y Computación, UCM

ICE-TCS Workshop on Logic and Concurrency (Reykjavik, September 15th, 2010)

Motivation

- We present two notions of simulation (those in Ignacio's talk) which can be defined as coalgebraic simulations.
 - Covariant-contravariant simulation: I/O Automata.
 - Conformance simulation: reducing non-determinism.
- In order to define them in a proper way we need an order with good enough properties.

Coalgebraic Simulations

- Generalize coalgebraic bisimulations by means of arbitrary preorder relations.
- Very general notion; perhaps, too general: the induced similarity relation needs not be transitive.
- In [HughesJacobs04] stability is also required, which is guaranted by a stronger condition ("right-stability").
 - We have shown that it induces a "natural" direction in the induced simulation order.
 - However, the symmetric "left-stability" also guarentees stability.
 - Other, more ellaborated "combinations" of right and left stable orders also do the work.

Coalgebras

- For a functor *F*, an *F*-coalgebra is a function *c* : *X* → *FX*, so that *x* ∈ *X* is a state and *c*(*x*) the set of succesors of *x*.
- Choosing *F* we can obtain different structures:
 - $\mathcal{P}(X)^A$ for labelled transitions systems.

$$\overbrace{X_2}^{a_2} \xrightarrow{a_1} \overbrace{X_1}^{a_2} \xrightarrow{a_1} \overbrace{X_3}^{a_2,a_1}$$

•
$$\mathcal{P}(AP) \times \mathcal{P}(X)$$
 for Kripke structures.

Bisimulations

• A functor F : Sets \rightarrow Sets can be lifted to $\operatorname{Rel}(F)$: Rel \rightarrow Rel:

$$\begin{array}{rcl} \operatorname{Rel}(F)(R) &=& \{ \langle u, v \rangle \in FX_1 \times FX_2 \mid \\ & \exists w \in F(R).F(r_1)(w) = u, F(r_2)(w) = v \} \end{array}$$

If $R \subseteq X \times Y$ then $\operatorname{Rel}(F)(R) \subseteq FX \times FY$.

• A bisimulation for $c : X \longrightarrow FX$ and $d : Y \longrightarrow FY$ is a relation $R \subseteq X \times Y$ "closed under *c* and *d*":

if $(x, y) \in R$ then $(c(x), d(y)) \in \operatorname{Rel}(F)(R)$

If states x and y are related, so are their successors c(x) and d(y).

Example: labelled transition systems

• Unfolding $\operatorname{Rel}(\mathcal{P}(id)^A)(R) \subseteq \mathcal{P}(X)^A \times \mathcal{P}(Y)^A$:

• $R = \{(x_1, y_2), (x_2, y_2), (x_3, y_1)\}.$ • $(c(x_1), d(y_2)) \in \operatorname{Rel}(F)(R)$ but $(c(x_2), d(y_1)) \notin \operatorname{Rel}(F)(R).$

Simulations

- An order <u>□</u> on *F* is given by a collection <u>□</u>_X ⊆ *FX* × *FX* that is functorial (roughly, it must be preserved by renaming).
- A \sqsubseteq -simulation for $c : X \longrightarrow FX$ and $d : Y \longrightarrow FY$ is a relation $R \subseteq X \times Y$ such that if $(x, y) \in R$ then $(c(x), d(y)) \in \operatorname{Rel}_{\sqsubseteq}(F)(R)$,

that is,

$$c(x) \sqsubseteq_X u \operatorname{Rel}(F)(R) v \sqsubseteq_Y d(y),$$

for some *u* and *v*.

• Bisimulations are simulations for the identity order.

Stability

• \sqsubseteq for *F* is stable if $\operatorname{Rel}_{\sqsubseteq}(F)$ commutes with substitution:

- Given
$$f: X \longrightarrow Z$$
 and $g: Y \longrightarrow W$,

 $\operatorname{Rel}_{\sqsubseteq}(F)((f \times g)^{-1}(R)) = (Ff \times Fg)^{-1}(\operatorname{Rel}_{\sqsubseteq}(F)(R))$

- Stable orders give rise to nice simulations.
- \sqsubseteq is right-stable if $(id \times Ff)^{-1} \sqsubseteq_Y \subseteq \coprod_{Ff \times id} \sqsubseteq_X$.
- Right-stability is equivalent to
 - \Box stable and
 - $\operatorname{Rel}(F)(R) \circ \sqsubseteq_X \subseteq \sqsubseteq_Y \circ \operatorname{Rel}(F)(R).$
- If F is right-stable,

$$\sqsubseteq_{\mathsf{Y}} \circ \operatorname{Rel}(\mathsf{F})(\mathsf{R}) \circ \sqsubseteq_{\mathsf{X}} = \sqsubseteq_{\mathsf{Y}} \circ \operatorname{Rel}(\mathsf{F})(\mathsf{R})$$

Plain Simulation

- Labelled transition systems (lts) are coalgebras for the functor $FX = \mathcal{P}(X)^A$.
- "Classical" simulations coincide with coalgebraic simulations for the order ⊆:
 - ▶ given $f, g \in FX = \mathcal{P}(X)^A$, that is, $f, g : A \longrightarrow \mathcal{P}(X)$ $f \sqsubseteq g$ if for all $a \in A, f(a) \subseteq g(a)$.
- It is right-stable.

Plain Simulation

- As a consequence of the right-stability ⊆-simulations can be characterized as the (⊆_Y ∘ Rel(F)(R))-coalgebras.
 - The use of \subseteq_X at the lhs can be replaced by that of \subseteq_Y at the rhs:
 - \subseteq_X "adds new successors to c(x)".
 - \subseteq_Y "removes successors of d(y)".
 - If q simulates p, by removing the exceeding part of q we obtain q["]
 "bisimilar" to p.

 $p \operatorname{Rel}(F)(R) q'' \subseteq q$

Anti-simulations

• Anti-simulations are \supseteq -simulations for $FX = \mathcal{P}(X)^A$, that is,

$$f \sqsubseteq g \Leftrightarrow f(a) \supseteq g(a)$$
 for all $a \in A$.

- *c* "simulates" *d* if and only if *d* "is simulated by" *c*.
- The order \supseteq is not right-stable.
- However, it is stable.

Left-stability

- *F* with \sqsubseteq is left-stable if for all $f : X \longrightarrow Y$, $(Ff \times id)^{-1} \sqsubseteq_Y \subseteq \coprod_{id \times Ff} \sqsubseteq_X$.
- Anti-simulation is left-stable.
- *F* with \sqsubseteq is stable iff it is stable with the inverse order \sqsubseteq^{op} .

Relating (Trivially) Left-stable and Right-stable Orders

- An order \sqsubseteq is left-stable iff \sqsubseteq^{op} is right-stable.
 - Both right-stability and left-stability give a **natural** direction to simulation relations.
- Left-stable orders have the same structural properties as right-stable ones.
 - \subseteq -similarity is transitive, etc.
- The composition of right (resp. left)-stable orders gives us a new right (resp. left)-stable order.

Covariant-contravariant simulations

- Given an alphabet Act, we will consider a partition {Act^r, Act^l, Act^{bi}} of Act.
- An (Act^r, Act^l)-simulation for c : X → P(X)^{Act} and d : Y → P(Y)^{Act} is a relation S such that ∀(x, y) ∈ S:
 ∀a ∈ Act^r ∪ Act^{bi}, ∀x → x' ∃y → y' with (x', y') ∈ S.
 ∀a ∈ Act^l ∪ Act^{bi}, ∀y → y' ∃x → x' with (x', y') ∈ S.

Covariant-contravariant simulations

- (Act^r, Act^l)-simulations can be defined as the coalgebraic simulations for the order _{Act^r} ⊆_{Act^l} ⊆ P(X)^A × P(X)^A.
- If $f, g : Act \longrightarrow \mathcal{P}(X)$, then $f_{Act'} \sqsubseteq_{Act'} g \Leftrightarrow$:
 - ▶ for all $a \in Act^r \cup Act^{bi}$, $f(a) \subseteq g(a)$, and
 - ▶ for all $a \in Act^{l} \cup Act^{bi}$, $f(a) \supseteq g(a)$.
- $Act^r \sqsubseteq Act^l$ is stable.
 - It can be "decomposed" as a product of both right-stable and left-stable orders.
 - However, it is neither right-stable nor left-stable.

Conformance simulations

 They behave as plain simulations allowing the extension of the set of actions offered by a process:

a < a + b

 But a process can also be "improved" by reducing the nondeterminism in it.

ap + aq < ap

A conformance simulation between c : X → P(X)^A and d : Y → P(Y)^A, is a relation R such that if pRq then
∀a ∈ A, p → a ⇒ q →.
∀a ∈ A (q → q' ∧ p →) ⇒ p → p' and p'Rq'.

Conformance simulations

 Conformance simulations can be defined as the coalgebraic simulations for the order ⊑^{Conf}⊆ P(X)^A × P(X)^A.

• If
$$f, g: A \longrightarrow \mathcal{P}X$$
, then $f \sqsubseteq_X^{Conf} g \Leftrightarrow$

•
$$f(a) \supseteq g(a)$$
 and $g(a) \neq \emptyset$.

- \Box^{Conf} is stable.
 - However, it is neither right-stable nor left-stable.

Side stable orders

- In the proof of stability of the order for covariant-contravariant simulations, each subset of the partition of *Act* is dealt with separately.
- An order ⊑ defined over F^A may be split into a family of orders ⊑^a over F.
- An order ⊑ over a functor F^A is action-distributive if there exists a family of orders ⊑^a on F such that:

$$f \sqsubseteq g \iff f(a) \sqsubseteq^a g(a)$$

for all $a \in A$. We write $\sqsubseteq = \prod_{a \in A} \sqsubseteq^a$.

Side stable orders

- A side stable order is an action-distributive order such that each component is either right-stable or left-stable.
- If ⊆ = ∏_{a∈A} ⊆^a and each ⊆^a is stable, then ⊆ is also stable.
 Side stable orders are stable.
- By separating the right and the left-stable components we obtain $\Box = (\Box^{\overline{r}} \cup \Box^{\overline{l}})^*$.
- The covariant-contravariant order $_{Act'} \sqsubseteq_{Act'}$ is side stable.

Composition of Right-stable and Left-stable Orders

- \Box^{Conf} is also an action-distributive order, but not side stable.
- The distributivity of ⊑^{Conf} leads to its decomposition as a right-stable and a left-stable order that commute with each other.
- Given ⊑^r that is right-stable on F and ⊑^l that is left-stable, and commute with each other, their composition defines a stable order on F.
- Moreover, the coalgebraic simulations for □ = □^r ∘ □^l can be characterized as the (□^r ∘ Rel(F)(R) ∘ □^l)-coalgebras.

Logical Characterizations

- We are interested in finding modal logics that characterize these two notions of simulations.
- A first approach is to build them from scratch taking, for example, plain simulations as models.
- A second way is to follow the general categorical constructions developed by Corina Cîrstea.

Logical Characterizations: the Categorical Way

- First, the adequate order has to be identified. Actually, Cîrstea's construction follows an alternative presentation of coalgebraic simulations.
- The language of the logic is the initial algebra of a suitable functor.
- The "semantics" of the logic is defined by means of another functor.
- Under certain conditions (a colimit needs to exist), the "semantics" induces a logic that characterizes similarity for the simulation.
- We were able to check that the logics obtained for our simulations using these two methods coincide.

Summary

- Two interesting notions of coalgebraic simulations which are not strongly stable.
 - Both can be factorized into the composition of a right and a left-stable component, and so are proved to be stable.
 - Witness that "strong" stability is, well, too strong.
- Right-stability is an assymetric property.
 - We can use it to get a natural orientation for the simulation orders.
 - Its dualization leads to left-stability, with the same good properties.
 - By combining both right-stable and left-stable orders in several ways we can still preserve stability.
- These simulations can be endowed with a modal logic that characterizes them.
 - Ad-hoc manner.
 - Categorically.