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Abstract. We examine the known approximation algorithms for the
classic graph coloring problem in general graphs, with the aim to extract
and restate the core ideas. We also explore a recent edge-weighted gener-
alization motivated by the modeling of interference in wireless networks.
Besides examining the current state-of-the-art and the key open ques-
tions, we indicate how results for the classical coloring problem can be
transferred to the approximation of general edge-weighted graphs.

1 Introduction

Graph coloring is among the most fundamental NP-hard optimization problems.
It forms the basic model of conflict resolution, or scheduling with conflicts, and
the allocation of scarce resources, such as access to spectrum in wireless com-
puting.

Formally, given an input graph G = (V,E) with vertex set V and edge set
E, a proper (vertex) coloring is an assignment π : V → {1, 2, . . . , } such that
adjacent vertices receive different colors, i.e., uv ∈ E implies that π(u) 6= π(v).
The objective of the coloring problem is to minimize the number of colors used,
i.e., the largest value π(v). The chromatic number χ(G) is the minimum number
of colors used in a proper coloring of G. Let n denote |V |.

The aim of this note is to survey the state of affairs in the development of
approximation algorithms for graph coloring. Namely, we focus on inexact algo-
rithms that offer performance guarantees: the performance (ratio) of a coloring
algorithm is largest ratio between the number of colors used by the algorithm
on an instance G to the chromatic number of G. This ratio may be a function
of some parameter of the graph, most commonly n, the number of vertices. We
consider here general graphs, i.e., the class of all graphs, rather than (possibly)
more manageable graph families.

We survey the known polynomial-time approximation algorithms for general
graphs, with the aim to gather and restate the key ideas used in these algorithms.
This is a study that extends back to early seventies, but curiously enough, the
trail dries up by 1990. In the interim, research in lower bounds has brought
extensive and illustrious advances, which may motivate renewed efforts on upper
bounds.

We also introduce a recently proposed generalization of coloring involving
edge-weighted graphs. This is motivated by scheduling in wireless networks.



2 Approximation Algorithms for Coloring General
Graphs

It is useful to break the task of coloring the whole graph into progress steps.
Informally, an operation yields progress towards a T -coloring if a repetition of
such operations results in a valid T -coloring.

We first note that the coloring task can be reduced to the apparently easier
task of finding a large independent set, i.e., a subset of mutally non-adjacent
vertices. This set can be assigned a fresh color, and the task repeated until all
the vertices have been colored. In general, such a reduction carries a log-factor
overhead (as known from the approximation of the Set Cover problem). However,
since we are content with performance ratios that are a polynomial in n when
treating general graphs, the overhead factor actually reduces to a constant.

Example: Suppose we are given a
√
n-approximation algorithm for indepen-

dent sets in χ-colorable graphs. We argue that repeated application results in
a 4
√
n-approximation for coloring. Namely, χ

√
n applications (using that many

colors) reduce the number of vertices to at most n/2. Halving the number of ver-
tices further takes at most another χ

√
n/2 applications. Continuing, the number

of colors used form a geometric sequence of χ
√
n(1 +

√
2
−1

+
√

2
−2

+ · · · ) ≤
χ
√
n/(1− 1/

√
2) < 3.5χ

√
n, which yields a 3.5

√
n-approximation.

Observation 1. Repeated application of a ρ-approximation algorithm for inde-
pendent sets in χ-colorable graphs results in a O(ρ)-approximation algorithm for
coloring, whenever ρ = Ω(nε), for some ε > 0.

Johnson One simple progress step involves identifying a smallest degree vertex
v. We add v to our independent set solution and recurse on the set N [v] of
vertices non-adjacent to v.

Johnson [17] analyzed several graph coloring heuristics and showed that the
minimum-degree greedy heuristic attained a non-trivial performance ratio. The
heuristic can be viewed as a repeated application of the above progress step.
His observation was that for a minimum degree vertex v, the number N [v] of
non-neighbors is at least n/χ − 1, since all nodes that belong to the largest
color class A must be non-adjacent to the other nodes in the class, and A must
contain at least n/χ vertices. By repeatedly selecting a minimum degree vertex
and eliminating its neighbors, we obtain an independent set whose size S(n), as
a function of the number of nodes n in the graph, can be given by the recurrence
relation S(n) ≥ 1 + S(n/χ) and S(1) = 1. The solution of this recurrence is
S(n) = logχ n. It follows that

Observation 2. Selecting the minimum-degree vertices makes progress towards
a O(n/ logχ n)-coloring.

The performance ratio of the minimum-degree algorithm is therefore at most
O(n/(χ · logχ n)). This is maximized when χ is constant, for a performance ratio
of O(n/ log n).



Wigderson Wigderson [22] observed that 3-colorable graphs could be colored
with O(

√
n)-colors. Namely, we can consider two cases depending on vertex

degrees. If there is a vertex v of degree at least
√
n, then we can make progress

as follows. We note that the graph G[N(v)] induced by the neighbors of v is
2-colorable; thus by assigning it two fresh colors, we make progress towards a
O(
√
n)-coloring. On the other hand, if there is a vertex of degree less than

√
n,

we can make progress towards a O(
√
n)-coloring in the same way as argued for

the min-degree heuristic.
By generalizing his argument, we can always make progress towards a

O(χnχ−1)-coloring by considering two cases depending on vertex degree: either
there is a node of degree at most nχ−1, or there is a node v of higher degree in
which case its sizable neighborhood is χ−1 colorable and by induction we make
progress.

Observation 3. We can always make progress towards a O(χnχ−1)-coloring of
χ-colorable graphs.

If we now combine this bound with Johnson’s, selecting the better of
the two bounds, we obtain an algorithm with performance ratio at most
O(min(nχ−1, n/(χ logχ n)), which is easily seen to be O(n(log log n/ log n)2).

Berger and Rompel Even if there are no truly low-degree vertices, we may
still find a set of independent vertices whose combined neighborhood is relatively
small, allowing us to generalize the min-degree approach of making progress.

Consider the largest color class A, whose size is clearly at least n/χ. If we
pick a subset S in A, then none of the other vertices A \S are adjacent to nodes
in S, obviously. Thus, in particular, we can see that if we define N(S) to be the
set of vertices non-adjacent to all nodes in S, we get that |N(S)| ≥ n/χ − |S|.
Since S will generally be much smaller than n/χ, finding such a set S allows us
to make progress towards finding a Ω(|S| · logχ n)-independent set, resulting in
a O(n/(|S| logχ n))-coloring.

But how to find such a set of non-trivial size? We have no certificate of what
it means to be in the largest color class A. Here we are helped by abundance: A
is large so it contains a lot of subsets. In particular:

Observation 4. A random subset of size K = logχ n is contained in A with
probability at least 1/n.

Thus, we can pick random subsets until we find one that satisfies the properties
of belonging to A. Berger and Rompel [4] derandomized this argument to obtain
a deterministic method with the same performance.

It follows that we can strengthen the min-degree approach considerably:

Observation 5. One can always make progress towards a O(n/(logχ n)2)-
coloring.

If we combine this progress bound with Wigderson’s, we obtain a coloring
with performance ratio of min(χnχ−1, n/(χ(logχ n)2)). This is maximized when
χ = Θ(log n/ log log n), for a performance of O(n(log log n/ log n)3).



Note that the hardest cases for all these approximation algorithms are when
χ(G) is Θ(log n/ log log n). Wigderson’s approach then fails to deliver, leaving
us with a O(log n/ log log n)2-sized independent set.

Further improvement One may wonder if Observation 4 can be leveraged
to get stronger properties on the subset S beyond the basic bound of n/χ on
the non-neighborhood size. The key observation (from [9]) is that when the
non-neighborhood size is small, nearly all of it must belong to the independent
set A. But then, one can bring to bear algorithms to approximately find large
independent sets. Specifically, the Ramsey method of Boppana and Halldórsson
[6] achieves equivalent approximation factor for the independent set problem as
Wigderson’s method gave for the coloring problem.

We are thus led to the following strategy. We search for an independent set
S of size K = logχ n that satisfies properties that hold for subsets of A. Then,
one of two things must happen:

1. The Ramsey method finds a large independent set in N(S) (specifically of
size Ω(log3 n)), or

2. The non-neighborhood N(S) is larger than we previously argued.

Specifically, in the latter case the non-neighborhood must be of size Ω(logχ n ·
log n/ log(χ log log n/ log n)), which in the range of interest for χ is Ω(logχ n ·
log n).

When combined with Wigderson’s bound, we obtain a performance ratio of
O(n(log log n)2/ log3 n), shaving off a loglog-factor.

Additional results Progress on lower bounds on approximability, based on the
PCP theory [2], has been extensive since the early nineties. Most of the work is on
the somewhat easier independent set problem, while Feige and Kilian [7] showed
how to extend some of the results to chromatic number, in particular giving
n1−ε-hardness, for any ε > 0. The strongest hardness to date for independent

sets is n/2(logn)
3/4+γ

, for any γ > 0, by Khot and Ponnuswami [20].
The most promising direction for improved approximation algorithms for in-

dependent sets and coloring has for long been semi-definite programming (SDP),
such as the θ-function of Lovász [21] and various hierarchies and strengthenings.
For many families of problems, the best possible results achievable in polyno-
mial time are obtained by SDPs. SDPs have been useful for coloring graphs of
low chromatic number, including the best approximation known for 3-coloring of
Õ(n3/14) [5]. For general graphs, however, all the results on SDP for independent
sets or coloring have been negative, with stronger lower bounds than the known
inapproximability bounds.

We are led to ask what may possibly help algorithms for coloring general
graphs. It is curious that it is almost a quarter of a century since the appearance
of the last improved approximation results ([8] in 1990). The bold conjecture in
[9] that the best possible approximability is only Θ(n/polylog(n)) may still be
validated. That still leaves some room for improvement.



3 Coloring Edge-Weighted Graphs

We address a generalization of the classic graph coloring problem. A coloring can
be viewed as a partition of the vertices into sets of ultimate sparsity: each vertex
has degree less than 1 (i.e., zero) from the other nodes in the same color class.
We assume the same constraint, with the only difference that degrees are now
weighted. In fact, the graph need not be symmetric, so we have an edge-weighted
digraph. Thus, we now seek a partition into fewest possible vertex subsets such
that each node has weighted in-degree less than 1 from other nodes in the same
set.

Our motivation for this problem comes from modeling interference in wireless
networks. Whereas the classical TCS approach is to model interference as a pair-
wise binary property (i.e., one that can be captured by a graph), a more refined
view commonly used by engineering communities is that interference is a many-
to-one relationship. Having a conversation in a room where another discussion
is going on may work fine, but once the room becomes crowded with speakers,
listening becomes progressively harder. In other words, it is the cumulative effect
of multiple transmitters that matters when assessing whether a message can be
properly decoded.

Formally, we are given a digraph H = (V,E) with non-negative weights
w : E → R+ on the edges. A subset S of vertices is independent if the in-degree
within S of each node is strictly less than 1, i.e., if

∑
u∈S w(u, v) < 1, for each

v ∈ S. A coloring is, as before, a partition into independent sets, and we aim to
use the fewest colors possible. Notice that in the case of symmetric 0/1-weights,
the definition coincides with classical graph coloring.

We will first focus on coloring approximation in terms of the parameters n
and χ, before examining the sparser instances that relate to the specific wireless
applications.

3.1 Coloring general (edge-weighted) graphs

The question of how well we can handle general edge-weighted graphs is inter-
esting from a basic science standpoint, even if the results are too weak for most
applications.

A very simple approach yields an easy O(n/ log n)-approximation (proposed
for the wireless scheduling problem in [16], while the generic approach was per-
haps first stated in [10]): Partition the graph into n/ log n vertex-disjoint sets,
and color each set optimally with a fresh set of colors. Since such an optimal
coloring of a graph on n vertices can be obtained in time about 3n [16], using the
technique of inclusion-exclusion, the time complexity of coloring the log n-sized
sets is polynomial.

The only other reported result involves the case of graphs that contain an
independent set of size (1 + ε)n/2, for some ε > 0. In this case, a semi-definite
programming formulation results in an algorithm to produce an independent set
of size Ω(εn) [13]. This is, however, insufficient to provide non-trivial bounds
even for 2-colorable graphs.



We propose here different approaches that emulate some of the results ob-
tained for ordinary graphs. We skip Johnson’s approach and start with Berger
and Rompel’s. Recall that χ = χ(H) is the chromatic number of the edge-
weighted graph H.

Proposition 1. There is an algorithm that finds a O(n/(logχ logn n)2)-coloring
of an edge weighted graph H.

Let k be such that k = χ(H) · log2
k n, and note that log k = Θ(log(χ log n)).

Let X = log2
k n. We form a (classical) graph G on the same vertex set as H,

where uv ∈ E(G) iff w(u, v) + w(v, u) ≥ 1/X. We then apply the algorithm of
Berger and Rompel on G to obtain an independent set I in G, but retain at most
X of the nodes in I. This set is then a feasible (edge-weighted) independent set
in H, since all weights of edges within I are less than 1/X.

It remains to argue a lower bound on the size of the independent set I found.
Consider a color class C in H and a node v in C. Observe that v has fewer than
X neighbors within C in G, thus C induces a subgraph in G of maximum degree
less than X. It follows that χ(G) ≤ X ·χ(H) = k. The Berger-Rompel algorithm
produces a set I of size Ω(log2

χ(G) n) = Ω(X). Hence, we make progress towards
a O(n/X)-coloring, as claimed.

We next turn to Wigderson’s approach. We start with the case of 2-colorable
graphs, the first case that is not computationally easy in the edge-weighted
setting. With hindsight, we actually aim to handle a more general case. A graph
H is said to be t-almost k-colorable, for parameters t and k, if there is a subset
of tn1/k vertices whose removal leaves the graph k-colorable.

Proposition 2. There is an algorithm that finds a O(t
√
n)-coloring of t-almost

2-colorable edge-weighted graphs.

Set X =
√
n and form again the graph G = GX defined as before. Again, we

see that an independent set in G of size at most X is independent in H. If there
is a vertex of degree at most 3(t + 1)n/X in G, we can clearly make progress
towards a O(tX)-coloring, as desired.

On the other hand, consider a vertex v of degree at least 3(t + 1)n/X and
let Nv denote its set of neighbors. Our aim is to apply the SDP approach on
the induced subgraph H[Nv], and for that purpose we need to show that its
independence number is high. Let C denote the set of (at most tX) vertices
whose removal makes H to be 2-colorable, and let A and B denote the two color
classes. Suppose v is in A, without loss of generality, and let NA = Nv ∩ A be
the subset of Nv from A. Note that NA is of size at most X (since the sum of
the incoming weights from nodes in A is less than 1 and each such edge weight
is at least 1/X). The set Nv −NA − C must be a subset of B, and its fraction
of Nv is at least

|Nv −NA − C|
|Nv|

≥ 1− |X|+ |tX|
|Nv|

≥ 1− 1 + t

3(t+ 1)
=

2

3
.



Thus, the induced subgraph H[Nv] contains a feasible subset of at least two
thirds of the nodes. We can then apply the SDP result of [13] with ε = 1/3 to
obtain an independent set I of size Ω(ε|Nv|) = Ω(tX), making progress towards
a O(n/(tX)) = O(

√
n/t)-coloring, as desired.

We now apply the approach recursively, along the lines of Wigderson.

Proposition 3. There is an algorithm that finds an independent set of size
Ω(n1/k/(t + k)) in a t-almost k-colorable edge-weighted graphs. Thus, we can
make progress towards a O((t+ k)n1−1/k)-coloring.

When k = 2, the claim holds from Prop. 2, so assume k ≥ 3. Let X = n1/k

and form G = GX as before. If there is a vertex of degree at most n/X in G,
then by selecting it we make progress towards a O(n/X) = O(n1−1/k) coloring.
Otherwise, consider the set Nv of neighbors of an arbitrary vertex v, which
is of size greater than n/X = n1−1/k. We claim that H[Nv] is (t + 1)-almost
k− 1-colorable. Namely, Nv might contain the at most tX nodes whose removal
turns H into a k-colorable graph H ′, and it could contain at most X nodes that
belong to the same color class in H ′ as v, but together this amounts to only
(t+ 1)n1/k ≤ (t+ 1)(|Nv|k/(k−1))1/k = (t+ 1)|Nv|1/(k−1), which satisfies (t+ 1)-
almost (k − 1)-colorability. By applying our method by induction on H[Nv], we
obtain an independent set I of size at least

c
|Nv|1/(k−1)

(t+ 1) + (k − 1)
= c
|Nv|1/(k−1)

t+ k
≥ c n

1/k

t+ k
,

for some absolute constant c, thus making progress towards a (t + k)n1−1/k-
coloring, as desired.

In particular, we obtain a O(kn1−1/k)-coloring of k-colorable graphs.

Finally, we can combine the two approaches (Props. 1 and 3) to get approx-
imation results for coloring general edge-weighted graphs that almost matches
the best ratio known for ordinary graphs. The maximum of the two bounds is
achieved when χ = θ(log n/ log log n).

Corollary 1. There is a O(n(log log n/ log n)3)-approximate algorithm for col-
oring edge-weighted graphs.

3.2 Better solvable cases

The instances that arise in wireless settings are not completely arbitrary. They
have structure that distinguish them from general instances. Let us examine
some of the structural properties that help in getting better solutions.

Wireless transmissions take place in physical space, and interferences gen-
erally speaking decreases with distance. One may expect there to be limits to
how much a single transmission can be disturbed. Graph theoretically, it is nat-
ural to consider graphs of low maximum in-degree ∆−(H). It was shown in [14]



that one can color such graphs using b2∆− + 1c2 colors. Very recently, an op-
timal upper bound of b2∆− + 1c colors was obtained [3], which can be made
constructive up to an arbitrarily small error term. A tight bound of d∆ + 1e
was also recently given for undirected edge-weighted graphs [1]. That resolves
these questions. However, there is no clear link between maximum degree and
the chromatic number, thus it does not directly address the question of efficient
approximability.

Another parameter of sparsity that connects well with classical colorings is
inductiveness. A graph is ρ-inductive if there is an ordering of the vertices so
that for each vertex v, the in-degree of v from the nodes succeeding it in the
order is at most ρ. Hoefer et al. [15] were among the first to treat wireless
scheduling problems as edge-weighted graphs. They also introduced measures
related to inductiveness in the study of the corresponding independent set prob-
lem. Earlier, Kesselheim and Vöcking [19] had actually shown that for wireless
instances (with certain regimes of fixed power assignments to the transmitters),
ρ(H) = O(log nχ(H)). This leaves the question of how good colorings can be
obtained in terms of the inductiveness parameter ρ.

Kesselheim and Vöcking [19] gave a distributed algorithm that uses at most
O(ρ log n) colors, resulting in a O(log2 n)-approximation. The bound on ρ was
later tightened to the optimal ρ(H) = O(χ) [11], resulting in a O(log n)-
approximation for coloring. However, this turns out to be best possible in
terms of inductiveness alone; namely, there are instances such that χ(H) =
Ω(ρ(H) log n) [3]. Thus, better-than-logarithmic solutions will need to take ad-
ditional properties of wireless instance into account.

Constant factor approximations are known for the independent set problem
of edge-weighted graphs for instances derived by wireless settings. Specifically,
it holds for the main two variants based on the choice of power assigned to the
senders: power depends only on the intended transmission distance [12], or the
power can be arbitrary [18]. This immediately implies logarithmic approxima-
tions for the corresponding coloring problems. These results utilize the fact that
the transmission take place between units embedded in a metric space. Each
node of the graph corresponds to a communication link, a sender-receiver pair
located in the metric, while the weight of an edge represents the disturbance that
one transmission has on another transmission link. In particular, in the setting
where all senders use the same power, the weight of the directed edge (u, v) from
link (su, ru) to link (sv, rv) is proportional to (d(sv, rv)/d(su, rv))

α, where α is
a fixed positive constant.

The key question is whether the metric property can be brought to bear to
obtain better approximation ratios than logarithmic. The holy grail would be to
give an absolute constant factor approximation. So far, all attempts have failed.
Still, there are no obvious a priori reasons why this cannot succeed.

Additionally, it would be interesting to characterize other classes of instances
that admit efficient approximations.



4 Conclusions

We have explored two graph coloring problems: The classical one and a recent
edge-weighted variation motivated by wireless applications. Much remains to be
done to deepen our understanding, even for the classical version.
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13. M. M. Halldórsson and P. Mitra. Wireless capacity with arbitrary gain matrix.
Theor. Comput. Sci., 553:57–63, 2014.
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