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Abstract. We present a randomized one-round, single-bit messages, distributed algorithm for the max-
imum independent set problem in polynomially bounded-independence graphs with poly-logarithmic
approximation factor. Bounded-independence graphs capture various models of wireless networks such
as the unit disc graphs model or the quasi unit disc graphs model. For instance, on unit disc graphs,
our achieved approximation ratio is O(( logn

log logn
)2).

A starting point of our work is an extension of Turán’s bound for independent sets by Caro and
Wei which states that every graph G = (V,E) contains an independent set of size at least β(G) :=∑
v∈V

1
degG(v)+1

, where degG(v) denotes the degree of v in G. Alon and Spencer’s proof of the Caro-Wei

bound in [1] suggests a randomized distributed one-round algorithm that outputs an independent set
of expected size equal to β(G), using messages of sizes O(logn), where n is the number of vertices of
the input graph. To achieve our main result, we show that β(G) gives poly-logarithmic approximation
ratios for polynomially bounded-independence graphs. Then, for O(1)-claw free graphs (which include
graphs of bounded-independence), we show that using a different algorithm, an independent set of
expected size Θ(β(G)) can be computed in one round using single bit messages, thus reducing the
communication cost to an absolute minimum.
Last, in general graphs, β(G) may only give an Ω(n)-approximation. We show, however, that this is best
possible for one-round algorithms: We show that each such distributed algorithm (possibly randomized)
has an approximation ratio of Ω(n) on general graphs.

1 Introduction

Something For Almost Nothing. When designing approximation algorithms, the usual goal
is to find desirable trade-offs between approximation guarantee and the resources required by the
algorithm, such as computation time, memory consumption, the number of queries to the input,
or, in the area of distributed computing, message size and the number of communication rounds.
In past years, in various algorithmic disciplines, research has been carried out in order to deter-
mine the minimum amount of resources required to achieve non-trivial solutions. Often, it is asked
how much effort it takes to obtain at least something from the given problem instance. Examples
include property testing algorithms [18] that query a given instance only a few times in order to
reason about whether the instance is close to having a certain property or it is far from having this
property. In distributed computing, this phenomenon can be observed for example with regards to
communication patterns and the total number of communication rounds. It has been shown that
non-trivial computation is possible even when the communication pattern of nodes is restricted to
beeps [4]. Moreover, research on so-called local algorithms [17, 12] that employ only a few commu-
nication rounds has been carried out and highly non-trivial results have been obtained (e.g. even
some NP-hard problems can be solved in only a constant number of communication rounds [2]).

In this paper, we ask whether non-trivial computation is possible if we grant a distributed algo-
rithm only a single communication round. Specifically, we ask whether reasonable approximations
to the maximum independent set problem can be computed in this harsh setting.
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Computational Model. We consider a network of computational units of unbounded compu-
tational power V modelled by a graph G = (V,E). The graph G constitutes the input graph of the
problem. We assume that vertices have unique IDs. Initially, besides its ID, every node v ∈ V also
knows its degree degG(v). Communication occurs in simultaneous communication rounds along the
edges E of G. Then the runtime of a distributed algorithm is the total number of communication
rounds. In this work, we mainly focus on algorithms that run in a single communication round.
In the LOCAL model, algorithms may exchange messages of unbounded sizes. In the CONGEST
model, message sizes are restricted to O(log n), where n denotes the number of vertices of the input
graph.

Independent Sets. An independent set I in a graph G = (V,E) is a subset of non-adjacent
vertices. An independent set I is maximal if it is inclusion-wise maximal, i.e., I ∪ {v} is not an
independent set for any v ∈ V \ I. A maximum independent set is one of maximal size. The
independence number of graph G is the size of a maximum indendent set in G and is denoted by
α(G). Computing maximum independent sets is NP-hard on general graphs [10] and is even hard
to approximate within factor n1−ε for any ε > 0 [21]. The independent set problem is one of the
most studied problems in distributed computing, and we detail related work further below.

Our Main Result. Our main result concerns graphs of polynomially bounded-independence,
a graph class that includes unit disc graphs and similar graph classes that are used for modelling
wireless networks (for a precise definition see the next paragraph). We show that in the harsh
setting of a single communication round, a poly-logarithmic approximation ratio can be achieved
in polynomially bounded-independence graphs. Furthermore, we show that not only the number
of communication rounds but also message sizes can be reduced to an absolute minimum, i.e., to
single bit messages.

Bounded-independence Graphs. Bounded-independence graphs capture many intersection
graphs of geometrical objects which in turn are used for modelling conflict graphs of wireless net-
works. Given a collection X = {X1, . . . , Xn} of geometrical objects, the corresponding intersection
graph is obtained by assigning X as the vertices of the graph, and an edge is introduced between
two vertices Xi, Xj iff the objects Xi and Xj intersect. In the literature, conflict graphs of wireless
networks are often modelled by unit disc graphs [7], the intersection graph of discs with equal radii,
where the radius of the discs corresponds to the transmission range of the wireless transmitters.
Unit disc graphs have many nice properties that allow for the design of efficient distributed algo-
rithms, but the assumption of identical transmission radii for all wireless transmitters is often too
restrictive. Consequently, the unit disc graphs model has been extended to more elaborate models
such as quasi unit disc graphs [13] or general disc graphs. In a general disc graph, no restriction
on the radii of the discs are imposed. Then, the parameter δ = rmax/rmin is introduced into the
analysis of algorithms, where rmax and rmin denote the maximal and the minimal radius of a disc,
respectively.

All graphs of the previously mentioned graph classes are of bounded-independence, a property
that restricts the size of a maximum independent set within the set of nodes at a given maximal
distance from any node. The r-neighborhood of a node v is the set of nodes at distance at most r
from v (excluding v).

Definition 1. A graph G = (V,E) is of bounded-independence if there is a bounding function
f(r) so that for each node v ∈ V , the size of a maximum independent set in the r-neighborhood
of v is at most f(r), ∀r ≥ 1. We say that G is of polynomially bounded-independence if f(r) is a
polynomial.
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It is easily verified that unit disc graphs are of bounded-independence with respect to a bounding
function in O(r2), and disc graphs are of bounded-independence with respect to a bounding function
in O((rδ)2). Many important problems such as the maximal independent set problem, or the (∆+1)-
coloring problem can be solved on bounded independence graphs by a distributed algorithm by
Schneider and Wattenhofer that uses O(log∗ n) communication rounds [19] which underlines the
usefulness of this graph class for distributed computation.

Turán’s Bound and a One-round Algorithm. A starting point of our work is an extension
of a celebrated theorem by Paul Turán. Turán showed that every graph G = (V,E) contains an
independent set of size at least n/d, where d is the average degree of G. This result has been
extended by Caro [3] and Wei [20] who showed that there is an independent set of size at least

β(G) :=
∑
v∈V

1

degG(v) + 1
,

where degG(v) denotes the degree of vertex v in G. An independent set of expected size β(G) can be
found by a simple linear time randomized algorithm that follows from an analysis of the Caro-Wei
bound by Alon and Spencer in [1]. This algorithm works as follows: Every node v chooses a random
real value between 0 and 1 and adds itself to the independent set I if none of its neighbors have
chosen a larger real value than v. Then, the probability that a node v is added to the independent
set is 1

degG(v)+1 , and, hence, by linearity of expectation, E|I| =
∑

v∈V
1

degG(v)+1 = β(G).
This algorithm can also be implemented distributively in a single communication round. Instead

of choosing a random real value, every node chooses a random value from a large enough ordered
set (e.g. {1, 2, . . . , n3} suffices) so that neighboring nodes choose different values with large enough
probability. In order to be able to determine such a number, nodes require knowledge of n, i.e.,
the order of the input graph. Furthermore, communicating the chosen value to neighboring nodes
requires messages of size O(log n). This algorithm fulfills, hence, the restrictions of the CONGEST
model. In the following, we will refer to this algorithm as Alon-Spencer-IS.

It is easy to see that in general graphs, an independent set of size β(G) may be a factor Θ(n)
smaller than the independence number α(G)1. This raises the following questions:

1. Are there interesting graph classes for which β(G) is a non-trivial approximation to the inde-
pendence number α(G)?

2. What are the minimum communication requirements for achieving the β(G) bound?
3. Is there a one-round independent set algorithm with approximation factor o(n) on general

graphs?

Our Results in Detail. Concerning Question 1, we identify that in graphs of polynomially
bounded-independence, an independent set of size β(G) is a poly-logarithmic approximation to a
maximum independent set. For instance on unit disc graphs, an independent set of size β(G) is
an O(( logn

log logn)2)-approximation to a maximum independent set. Furthermore, we prove that our
analysis is tight up to a constant factor on d-dimensional unit sphere graphs, for any constant
integer d. We also show that on the more general class of k-claw free graphs2, for k ≥ 3, a similar
result cannot be obtained. In Appendix A, we provide k-claw free graphs for which the Caro-Wei
bound is not a poly-logarithmic approximation to the independence number of the graph.

1 Consider, for instance, the graph G = (C ∪ I, E1 ∪ E2) with |C| = |I| = n/2. The edges E1 turn C into a clique.
Furthermore, for every u ∈ C and v ∈ I, the edge (u, v) is included in E2. Then, the size of a maximum independent
set is n/2 while β(G) ≤ 3

2
.

2 A graph is k-claw free, if it does not contain the complete bipartite K1,k as an induced subgraph.
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With regards to Question 2, we show that for the more general class of O(1)-claw free graphs,
the communication requirements can be reduced to an absolute minimum at the price of losing a
constant factor. We present a different and even simpler one-round algorithm that computes an
independent set of expected size Θ(β(G)) using single bit messages, thus decreasing the message
sizes from O(log n) to 1. This algorithm has the additional advantage that it does not require the
knowledge of n in advance. The latter property and the low communication requirements allow this
algorithm to be implemented in wireless and radio networks. Note that our main result, a poly-
logarithmic approximation one-round single bits messages algorithm for the maximum independent
set problem in polynomially bounded-independence graphs, follows from the previous two results.

Last, we answer Question 3 in the negative. We provide a lower bound that shows that any
possibly randomized one-round algorithm with error probability at most 1/n has approximation
ratio Ω(n).

Further Related Work. As already mentioned, independent sets are among the most studied
problems in distributed computing. However, most works consider the maximal independent set
problem while we consider the maximum independent set problem in this paper. It is known that
computing a maximal independent set requires Ω(

√
log n) communication rounds [12] in general

graphs, and even on a ring, Ω(log∗ n) rounds are necessary [15, 14]. Concerning approximations
to the maximum independent set problem, a (1 + ε)-approximation can be computed in O(log∗ n)
rounds in planar graphs [5]. As in graphs of bounded-independence, a maximal independent set is a
constant factor approximation to a maximum independent set, the previously mentioned O(log∗ n)
rounds algorithm of Schneider and Wattenhofer [19] gives a constant-factor approximation. Last,
we note that the Caro-Wei bound and Turán bound have been previously used as quality guarantees
for independent set approximation (e.g., [6]).

Notations. Throughout the paper, we use the following notations. Let G = (V,E) be a graph.
For a node v ∈ V , let ΓG(v) denotes the neighborhood of v and degG(v) = |ΓG(v)| its degree. The
d-neighborhood of v, denoted Γ dG(v), is the set of nodes of distance at most d from v excluding v,

while the set of nodes at distance exactly d from v is denoted by Γ
(d)
G (v). Let Γ dG[v] := Γ dG(v)∪ {v}

(and ΓG[v] = ΓG(v) ∪ {v}). For a subset of vertices U ⊆ V , the graph G|U is the subgraph of G
induced by the vertices U .

Outline. First, in Section 2, we prove our main result that the Caro-Wei bound is a poly-logarithmic
approximation to the independence number in polynomially bounded-independence graphs. An
algorithm with single-bit messages achieving the Caro-Wei bound up to a constant factor for O(1)-
claw free graphs is discussed in Section 3. Then, in Section 4, we show that on general graphs, any
possibly randomized distributed one-round algorithm computes an independent set of size at most
O(1), while the graph has an independence number of Ω(n). Last, in Section 5 we show that our
analysis of Section 2 is tight for d-dimensional unit sphere graphs.

In Appendix A, we show that in O(1)-claw-free graphs, β(G) generally is not a poly-logarithmic
approximation to α(G). Last, in Appendix B, we argue that running our algorithm from Section 3
iteratively multiple times does not substantially improve the approximation ratio of the algorithm.

2 Poly-logarithmic Approximation On Bounded-independence Graphs

We show that in graphs of polynomially bounded-independence, an independent set of size β(G) is
a poly-logarithmic approximation of a maximum independent set.
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We first show that in any graph G = (V,E), for any node v ∈ V and a large enough constant C,
the sum of the inverted degrees in the C logn

log logn -neighborhood of v is Ω(1) (Lemma 1). The size of

an independent set in such a C logn
log logn -neighborhood in a bounded-independence graph is at most

f(C logn
log logn), by definition. Hence, within the C logn

log logn -neighborhood of any node v ∈ V , the ratio

between the size of a maximum independent set and the Caro-Wei bound is O(f( logn
log logn)). Then,

by decomposing the input graph G into components of diameters at most 2C logn
log logn , we extend

this result to hold for the entire graph (Theorem 1).

Lemma 1. Let G = (V,E) be an arbitrary graph with maximal degree ∆. Let m = min{∆,C logn
log logn},

for a large enough constant C. Then:

∑
u∈ΓmG [v]

1

degG(u)
= Ω(1).

Proof. Let v ∈ V be any node, and let d0 = degG(v). For abbreviation, let sj = |Γ (j)
G (v)| for

j ≥ 1. We set s0 = 1 and we clearly have s1 = d0. Furthermore, let di = 1
si

∑
u∈Γ (i)

G (v)
degG(u)

be the average degree of the nodes in Γ
(i)
G (v). Then, the inverted degree sum of the nodes in the

m-neighborhood can be bounded as follows:

∑
u∈ΓmG [v]

1

degG(u)
=

1

d0
+

m∑
j=1

∑
u∈Γ (j)

G (v)

1

degG(u)
≥ 1

d0
+

m∑
j=1

∑
u∈Γ (j)

G (v)

1

dj

=
1

s1
+
s1
d1

+

m∑
j=2

sj
dj
, (1)

where the first inequality follows from the relationship between the harmonic mean and the arith-

metic mean. For i ≥ 2, consider a node u ∈ Γ
(i)
G (v) of degree at least di. Then, ΓG(u) ⊆

Γ
(i−1)
G (v)∪(Γ

(i)
G (v)\{u})∪Γ (i+1)

G (v). Hence, degG(u) ≤ si−1+si−1+si+1, and since di ≤ degG(u),
we also have di ≤ si−1 + si + si+1. Similarly, for d1 we obtain the inequality d1 ≤ s1 + s2. Using
this in Inequality 1, we obtain:

∑
u∈ΓmG [v]

1

degG(u)
≥ 1

s1
+
s1
d1

+
m∑
j=2

sj
dj
≥ 1

s1
+

s1
s1 + s2

+
m∑
j=2

sj
sj−1 + sj + sj+1

. (2)

Suppose that the sequence (si)1≤i≤m is not strictly increasing. Let j be the smallest index so that
sj ≤ sj−1. If j = 2, then the term s1

s1+s2
of Inequality 2 can be bounded by s1

s1+s2
≥ s1

s1+s1
= 1/2,

and thus,
∑

u∈ΓmG [v]
1

degG(u)
> 1

2 = Ω(1). Suppose that j > 2. Then, since j is the smallest index, we

have sj−2 < sj−1. Therefore, the addend with index j−1 of the sum in the right side in Inequality 2
can be bounded as follows:

sj−1
sj−2 + sj−1 + sj

>
sj−1

3 · sj−1
= 1/3,
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which implies
∑

u∈ΓmG [v]
1

degG(u)
> 1

3 = Ω(1). Assume now that the sequence (si)i is strictly increas-

ing. We bound the right side of Inequality 2 as follows:

∑
u∈ΓmG [v]

1

degG(u)
≥ 1

s1
+

s1
s1 + s2

+

m∑
j=2

sj
sj−1 + sj + sj+1

≥ 1

s1
+

s1
s1 + s2

+
m∑
j=2

sj
2 · sj + sj+1

. (3)

Let J ⊆ {2, . . . ,m} be the subset of indices so that for each j ∈ J :
sj

2·sj+sj+1
≤ log logn

logn . This implies

that for j ∈ J we have sj+1 ≥ sj

(
logn

log logn − 2
)

. Since the sequence (si)i is strictly increasing, we

can bound the size of the set J as follows:(
log n

log log n
− 2

)|J |
≤ n,

and therefore |J | = O( logn
log logn). We now set m = C logn

log logn for a large enough constant C so that

there are Θ( logn
log logn) indices i /∈ J with si

2·si+si+1
≥ log logn

logn . Then, the addends in the right side of

Inequality 3 that correspond to those indices i /∈ J sum up to a constant which proves part 1 of
the result.

We derive now a bound on m that depends on the maximal degree ∆. To this end, we depart
from Inequality 3. Notice that the bound on ∆ implies sj ≤ sj−1∆. Therefore, for any j, the
addend in Inequality 3 that corresponds to j is bounded as follows:

sj
2sjsj−1

≥ sj
2sj+∆sj

= 1
2+∆ .

Setting m = Θ(∆) implies that the right side of Inequality 3 sums up to a constant. ut

Theorem 1. Let G = (V,E) be a graph of polynomially bounded-independence with maximal degree
∆ and with bounding function f . Then:

α(G) = O

(
β(G) · f(min{∆, log n

log log n
})
)
.

Proof. Let m = min{∆,C logn
log logn} where C is the constant as in Lemma 1. Let S be a maximal 2m-

independent set in G, i.e., a maximal set of vertices of mutual distance at least 2m. Let I∗ denote a
maximum independent set in G. Since S is maximal, every vertex in I∗ is at a distance at most 2m
from a vertex in S, and thus |I∗| ≤ |S| · f(2m). Since S is 2m-independent, the m-neighborhoods
around nodes in S are disjoint. Thus, using Lemma 1, we have

β(G) =
∑
v∈V

1

degG(v)
≥
∑
s∈S

∑
v∈ΓmG (s)

1

degG(v)
= Ω(|S|).

Thus,

α(G) ≤ |S| · f(2m) = O(β(G) · f(2m)) = O(β(G)f(m)),

since f is a polynomial function. ut

6



3 Distributed Algorithm With Single Bit Messages

In the previous section, we showed that an independent set of size β(G) is a poly-logarithmic approx-
imation on graphs of polynomially bounded-independence. The Alon-Spencer-IS algorithm com-
putes an independent set of expected size β(G), and thus we obtain a one-round poly-logarithmic
approximation algorithm for the maximum independent set problem on graphs of polynomially
bounded-independence with message sizes O(log n). In this section, we improve on the message
complexity of the previous algorithm. We propose an alternative algorithm that computes an in-
dependent set of expected size Θ(β(G)) on O(1)-claw free graphs using single bit messages. As
bounded-independence graphs are (f(1) + 1)-claw free and f(1) is a constant, this algorithm also
constitutes an improvement for bounded-independence graphs.

We will consider the one-round algorithm, Algorithm 1, which can be seen as a simplified version
of the well-known distributed maximal independent set algorithm by Luby [16]. In each round of
Luby’s algorithm, nodes of a general graph G = (V,E) are added to an initially empty independent
set. One round consists of two phases: First, every node v ∈ V pre-selects itself with probability
Θ( 1

degG(v)
) as a candidate to join the independent set. Then, in the second phase, ties are broken

among the pre-selected nodes so that nodes with larger degree are preferred. Finally, selected nodes
and their neighbors are removed from G, and the round is completed. The algorithm terminates
when G is empty. In our version of the algorithm, a simplified method for breaking ties is used.
Instead of preferring nodes with larger degree, we only add a pre-selected node to the independent
set if none of its neighbors have been pre-selected. This method of breaking ties has been previously
used, e.g., in [8, 11, 9].

Algorithm 1 One-round independent set algorithm
Require: G = (V,E) {Input graph}
1: I ← ∅ {the independent set to be computed}
2: pi ← 1

2 deg(v)

3: Tv ←coin(pi) {Pre-selection step: If Tv = true then v is a candidate to join the IS}
4: for all v ∈ V with Tv = true do
5: if

∨
u∈ΓG(v) Tu = false then {Check whether a neighbor of v has been pre-selected}

6: I ← I ∪ {v} {v is selected into the IS}
7: end if
8: end for

We first derive a bound on the inverted degree sum of the neighborhood of an arbitrary node
v ∈ V in a k-claw free graph G = (V,E).

Lemma 2. Let G = (V,E) be a k-claw free graph. Then for every v ∈ V ,∑
u∈ΓG(v)

1

degG(u)
≤ k − 1 .

Proof. Let v be a node and let Hv = G|ΓG(v) be the subgraph induced by v’s neighbors. Observe
that for u ∈ V (H), degG(u) ≥ degH(u) + 1. Since G is k-claw free, α(H) ≤ k − 1. Thus, using the
Caro-Wei bound, we get that∑

u∈ΓG(v)

1

degG(u)
≤

∑
u∈V (H)

1

degH(u) + 1
≤ α(H) ≤ k − 1 .
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Theorem 2. Algorithm 1 is a randomized distributed one-round algorithm using single bit messages
that finds independent sets with expected Θ(β(G)) size on graphs G with constant claw size. In
particular, when G is polynomially bounded-independence, it achieves an expected approximation
ratio O(f(min{∆, logn

log logn})).

Proof. Let v be any node in G. Algorithm 1 adds v to the independent set if two independent events
happen: v is pre-selected in Line 3 of Algorithm 1 while none of its neighbors are pre-selected. Then,
by the linearity of expectation,

E |I| =
∑
v∈V

P [v ∈ I] =
∑
v∈V

P [v pre-selected ] · P [v ∈ I | v pre-selected ]

=
∑
v∈V

1

degG(v)
·
∏

u∈ΓG(v)

(1− 1

degG(u)
) =

∑
v∈V

1

degG(v)
·Θ
(
e
−

∑
u∈ΓG(v)

1
degG(u)

)
= Θ(1) · β(G) ,

applying Lemma 2 in the last equality. If G is of bounded-independence with bounding function f ,
it is (f(1) + 1)-claw free, which is a constant. Applying Theorem 1 we obtain the approximation
result. ut

Implementing Algorithm 1 in Beep Models and Wireless Networks. Algorithm 1 places minimal
demands on the underlying model in which it is implemented. Initially, nodes only require the
knowledge of their own degree (or of an estimate thereof), and, in particular, information about
the network size is not needed. In many wireless networks, the degree of local congestion provides
a good estimate for a node’s degree, and congestion can often be inferred using carrier sensing
techniques.

The communication structure of the algorithm naturally fits beep-like models and wireless net-
works. Pre-selected nodes send a signal to all their neighbors. Hence, models that only support radio
broadcast rather than the transmission of individual messages to neighboring nodes are sufficient
for implementing this step. With regards to the reception of signals from neighboring nodes, in
Line 5 of the algorithm, nodes only have to be able to learn whether no neighboring node emitted a
signal or whether at least one neighboring node emitted a signal. This type of information matches
precisely what can be learned by a node in one round in the discrete beeping model as introduced
in [4]. Also, in wireless networks, carrier sensing can yield information that is possibly weaker (a
node that is within a short range did transmit) but sufficient for the operation of our algorithm.

4 Lower Bound for One-round Algorithms on General Graphs

In this section, we prove that no distributed one-round algorithm can compute an independent
set whose size exceeds the Caro-Wei bound by more than a constant. In particular, every possibly
randomized distributed one-round algorithm on general graphs has an approximation factor of
Ω(n), where n is the number of vertices of the input graph.

Consider an arbitrary d-regular bipartite graph H = (A,B,E) with |A| + |B| = n′. Let G =
(V,E) be the graph consisting of a (d+1)-clique and a copy of H which is disjoint from the (d+1)-
clique. Let n = |V |, and hence n′ = n−d− 1. G is clearly d-regular. Furthermore, since H contains
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an independent set of size n′/2, the independence number of G is α(G) = n−d−1
2 . We assume that

each node has a unique label chosen from U = {1, . . . ,m}, where m ≥ n. Let L denote the set of
all possible labellings.

In order to prove our lower bound, we exploit the fact that all nodes in V have the same local
views, i.e., in one round, all nodes can only learn the d labels of their adjacent nodes. As all nodes
run the same algorithm, clearly in average over all possible labellings L, the probabilities for all
nodes to end up in I is equal. This fact is used in the following theorem:

Theorem 3. Every possibly randomized one-round distributed algorithm for maximum independent
set has an expected approximation factor of at least (n−∆−1)(∆+1)

2n , where ∆ is the maximal degree
of the input graph.

Proof. Consider the d-regular graph G = (V,E) as defined above. Then ∆ = d. Consider a possibly
randomized one-round algorithm for maximum independent set. Then, as previously argued, for all
u, v ∈ V , we have:

P [u ∈ I] = P [v ∈ I] , and (4)

E|I| =
∑
u∈V

P [u ∈ I] , (5)

where the probabilities are taken over all possible labellings L and the random coin flips of the
algorithm. Let p be the probability that a node ends up in I. Let C denote the (d+ 1)-clique of G.
Then, p · |C| = E|I ∩ C| ≤ 1, and hence, p ≤ 1

|C| = 1
d+1 . Therefore, E|I| ≤ np = n

d+1 . Next, since

α(G) = n−d−1
2 , the expected approximation ratio is at least (n−d−1)(d+1)

2n . ut

Remark. The graph G of the previous construction is disconnected. This can be circumvented by
removing arbitrary edges u1v1, u2v2, where u1v1 is contained in the (d+1)-clique and u2v2 is outside
the (d+1)-clique, and reinserting edges u1u2 and v1v2. The resulting graph is connected and equally
suits for proving the same lower bound.

5 Lower Bound for d-dimensional Unit Sphere Graphs

In this section, we show that the statement of Theorem 1, i.e., α(G) = O
(
β(G)f(min{∆, logn

log logn})
)

for any graph G = (V,E) of polynomially bounded-independence with bounding function f , is tight
for d-dimensional unit sphere graphs. As a consequence, the analysis of Algorithm 1 is also tight.

In Appendix B, we investigate on the performance of running multiple rounds of Algorithm 1.
We show that a super-constant number of iterations is necessary in order to improve on the one-
round bound performance by more than a constant factor.

A d-dimensional unit sphere graph G = (S,E) is the intersection graph of d-dimensional unit
spheres S = {s1, . . . , sn} (all spheres have the same radius): Each sphere si constitutes a vertex in
G and two spheres are adjacent iff they intersect. For d = 1, a unit sphere graph is a unit interval
graph, and for d = 2, a unit sphere graph is a unit disc graph.

Let d > 0 be some fixed dimension. We will denote our hard instance graph with Hk = (VH , EH)
where k is a parameter which we define later. We start our construction of Hk with a grid graph
Gk = (VG, EG) that is parametrized by an integer k ≥ 1. The vertex set of Gk is defined as
VG = {vx |x ∈ {0, 1, . . . , k− 1}d}. Let vx, vy with x, y ∈ {0, . . . , k− 1}d be two vertices of VG. Then
vx and vy are adjacent iff |x− y| = 1, where |x| =

∑
1≤i≤d |xi|.

9



The hard instance graph Hk is obtained from Gk as follows: For every vertex vx ∈ VG, a clique
Cx of size s(|x|) is introduced in Hk, where s(i) = dikdi logi n. Suppose that vx and vy are adjacent
nodes in Gk. Then all nodes of Cx are connected to all nodes of Cy in Hk, or, in other words,
Cx ∪ Cy also forms a clique in Hk.

First, notice that the graph Hk is in fact a d-dimensional unit sphere graph. Each vertex
v ∈ Cx ⊆ VH with x ∈ {0, . . . , k − 1}d corresponds to a sphere centered at position x with radius
1/2 (for convenience, in this construction we suppose that all spheres have the radius 1/2 instead
of 1). An example is provided in Figure 1.

Fig. 1. Illustration of the two dimensional case: On the left, the grid graph G4 is illustrated. On the right, the hard
instance unit disc graph H4 is shown. H4 is obtained from G4 by replacing each node at position (i, j) with a clique
of size s(i+ j).

We state now that Hk is of bounded-independence with respect to the bounding function f(r) =
(2r + 1)d

Lemma 3. The d-dimensional unit sphere graph Hk is of bounded independence with respect to the
bounding function f(r) = (2r + 1)d.

Proof. The size of an independent set in the k-neighborhood of a node v ∈ Cx ⊆ VH for some x ∈
{0, . . . , k−1}d is the same as the size of an independent set of the node vx ∈ VG in the corresponding
grid graph. Therefore, the r-neighborhood of an arbitrary node vx ∈ VG with x ∈ {0, . . . , k− 1}d is
a subset of the nodes with indices j ∈ {x1 − r, . . . , x1 + r} × · · · × {xd − r, . . . , xd + r}. Therefore,
|{x1 − r, . . . , x1 + r} × · · · × {xd − r, . . . , xd + r}| = (2r + 1)d is an upper bound on the size of an
independent set in the r-neighborhood of v. ut

Next, we identify the correct value for k so that graph Hk has O(n) vertices, and we show that
β(Hk) = O(1).

Lemma 4. Consider graph Hk = (VH , EH), and let k = O( logn
d2 log logn

). Then: |VH | = O(n) and

β(Hk) = O(1).

Proof. Denote by ni the number of cliques at distance i from the clique with index (0, . . . , 0).
Furthermore, denote by Vi := {v ∈ Cx : |x| = i} the set of nodes at distance i from the clique with
index (0, . . . , 0).

10



First, note that by construction of Hk we have ni ≤ ni+1d. This allows us to establish a relation
between |Vi| and |Vi+1|:

|Vi| = ni · s(i) ≤ ni+1d · (dikdi logi n) ≤ ni+1(d
i+1kdi logi n) =

|Vi+1|
kd log n

.

Then, as |VH | =
∑

i∈{0,...,d(k−1)} |Vi| and by the previous inequality, we obtain: |VH | = O(|Vd(k−1)|).
Then, setting k = Θ( logn

d2 log logn
) proves the first part of the lemma:

|VH | = O
(
|Vd(k−1)|

)
= O

(
dkdkd

2k logkd n
)

= O(n).

Next, in order to prove that β(Hk) = O(1), notice that |Vi| ≤ nis(i). Moreover, the nodes of
Vi have a degree of at least s(i+ 1), the size of a clique at distance i+ 1. Each node of the clique
C(k−1,...,k−1) clearly has a degree of at least s(d(k − 1)). Thus, we have:

∑
v∈VH

1

degHk(v)
=

 ∑
i∈{0,...,d(k−1)−1}

ni ·
s(i)

s(i+ 1)

+
nd(k−1)sd(k−1)

sd(k−1)
≤

 ∑
i∈{0,...,d(k−1)−1}

kd · 1

dkd log n

+ 1 =
k − 1

log n
+ 1 = O(1),

where we used the rough estimate ni ≤ kd. ut

Finally, we obtain the main theorem of this section on the performance of Algorithm 1.

Theorem 4. Consider graph Hk = (VH , EH), and let k = O( logn
d2 log logn

). Then, Algorithm 1 com-

putes an Ω(( logn
d2 log logn

)d) approximation to the maximum independent set problem on Hk.

Proof. Lemma 4 yields that the graph H has O(n) vertices, and the inverted degree sum of H is
O(1). As in Algorithm 1 the probability that a node ends up in the independent set is bounded
from above by its inverted degree, Algorithm 1 computes an independent set of expected size O(1).
Since the graph H contains an independent set of size Ω(( logn

d2 log logn
)d), the theorem follows. ut
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A The Caro-Wei Bound in Claw-Free-Graphs

For d ≥ 2, we construct now a (d + 1)-claw free graph G on O(n) vertices that contains an

independent set of size 2
√

log(n+d)−log d while β(G) ≤
√

log(n− d) + 1. This construction shows
that, generally, in (d + 1)-claw free graphs, β(G) is not a poly-logarithmic approximation to the
size of a maximum independent set.

To this end, let T denote a complete d-ary rooted tree of depth b
√

logn
log d c. Then, let G be the

graph obtained from T by replacing every node in T at level i by a clique of size ci = b n
d(i+1)i/2 c.

Two cliques Cu, Cv in G that correspond to two adjacent nodes u, v ∈ T are entirely interconnected
in G, or, in other words, G|Cu ∪Cv is a clique. If u and v are not adjacent, then there is no edge
between Cu and Cv. The root of T has been replaced by a clique of size n. Let L0 denote this clique.
Even though G is not a tree, we will refer to the nodes at distance i from one of the nodes of L0 as
the nodes at level i, and we denote the set of those nodes by Li. The construction is so that level i
contains |Li| = di · b n

d(i+1)i/2 c ≤ b n
d(i−1)i/2 c nodes. Therefore, graph G contains O(n) nodes in total.

Theorem 5. For any d ≥ 2, there exists a (d+ 1)-claw free graph on O(n) vertices so that:

α(G)

β(G)
≥ 2
√

log(n+d)−log d√
log(n− d) + 1

.

Proof. Consider graph G of the previous construction. The nodes at the last level L
b
√

logn
log d
c

con-

tain an independence set of size at least 2
√

log(n+d)−log d, as the tree T contains d
b
√

logn
log d
c ≥

2
√

log(n+d)−log d nodes on this level, which are also the leaves of T . Furthermore, β(G) evaluates to:

β(G) =
∑
v∈G

1

degG(v) + 1
≤ |L0| ·

1

|L0|
+


b
√

logn
log d
c∑

i=1

|Li|
1

ci−1



≤ 1 +

b
√

logn
log d
c∑

i=1

b n

d(i−1)i/2
c · 1

b n
di(i−1)/2 c

≤
√

log(n− d) + 1,

which implies the result. ut

B Lower Bound for Multiple Rounds

The construction of the hard instance graph Hk from Section 5 allows us to prove a lower bound
on the performance of running multiple iterations of Algorithm 1. We consider the algorithm as
depicted in Algorithm 2 (We denote Algorithm 1 by One-round-IS):
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Algorithm 2 Multiple rounds independent set algorithm
Require: G = (V,E) {Input graph}, r {number of rounds}
1: V ′ ← V {active nodes}, I ← ∅ {the independent set to be computed}
2: for i = 1 . . . r do
3: I ← I ∪ One-round-IS(G|V ′) {Run Algorithm 1}
4: V ′ ← V ′ \ (I ∪ ΓG(I))
5: end for
6: return I

We will prove now that when running Algorithm 2 on the graph Hk of the previous subsec-
tion for r rounds, the algorithm computes an independent set of size at most rd with probability
(1 − O( 1

d logn))i. As the graph Hk contains an independent set of size Ω(kd), this proves that the

approximation ratio of Algorithm 2 is Ω
(
(kr )d

)
.

Consider the situation of Algorithm 2 at the end of the ith iteration of the for-loop. We will
prove that at this moment, all cliques Cx with |x| ≤ kd−2i ∈ V ′ are still contained in V ′ with high
probability. In the following, denote by V ′i the set V ′ of Algorithm 2 after the ith iteration of the
for-loop, and denote by Ii the set I after the ith iteration of the for-loop. Due to space restrictions,
the proof of the following lemma can be found in the appendix.

Lemma 5. With probability at least (1−O( 1
d logn))i = Ω(e

i
d logn ):⋃

x∈{0,...,k−1}d with |x|≤kd−2i

Cx ⊆ V ′i .

Proof. We prove this lemma by induction on i. Consider the first iteration of the algorithm. Let
Cx be a clique such that |x| < kd. Then, the probability that a node of Cx is chosen into the

independent set is O( |Cx|
s(|x|+1)) = O( s(|x|)

s(|x|+1)) = O( 1
dkd logn

). Therefore, and by the union bound, the

probability that any of the cliques Cx with |x| < kd is chosen into the independent set is O( 1
d logn)

since there are only kd − 1 such cliques. Hence, with probability at least 1 − O( 1
d logn), any clique

Cx with |x| ≤ kd − 2 is such that Cx ∈ V ′1 .

Consider now iteration i + 1. By the induction hypothesis, with probability (1 − O( 1
d logn))i,

every clique Cx with |x| ≤ kd − 2i is included in V ′i . Then, by the same argument as before, the
probability that a node of any of the cliques Cx with |x| < kd − 2i is chosen into the independent
set in iteration i+ 1 is at most O( 1

d logn). Therefore, with probability (1−O( 1
d logn))i+1 all cliques

Cx with |x| ≤ kd − 2(i+ 1) are included in V ′i+1. This proves the lemma. ut

Theorem 6. Let H = Hk for the value k = logn
d2 log logn

. Then, Algorithm 2 computes an Ω(( logn
rd2 log logn

)d)

approximation to the maximum independent set problem on H in r rounds with probability Ω(e
r

d logn ).

Proof. By Lemma 5, with probability Ω(e
r

d logn ), all cliques Cx with |x| ≤ kd − 2r are included
V ′r , and hence, among the eliminated nodes, any independent set is of size O(rd). As the graph H
contains an independent set of size Ω(( logn

log logn)d), the result follows. ut

Remark on Alon-Spencer-IS. Both the one-round and the multi-round lower bound result
apply in the same way for Alon-Spencer-IS. The only property of Algorithm 1 that is needed in
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the analyses of both lower bound results is the fact that the probability that a node v is selected
into the independent set is Θ( 1

degG(v)
). As the same property holds for Alon-Spencer-IS, these

results immediately carry over.
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