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Abstract. We consider the class of strip graphs, a generalization of
interval graphs. Intervals are assigned to rows such that two vertices
have an edge between them if either their intervals intersect or they
belong to the same row. We show that recognition of the class of strip
graphs is NP-complete even if all intervals are of length 2. Strip graphs
are important to the study of job selection, where we need an equivalence
relation to connect multiple intervals that belong to the same job.

The problem we consider is Job Interval Selection (JISP) on m ma-
chines. In the single-machine case, this is equivalent to Maximum Inde-
pendent Set on strip graphs. For m machines, the problem is to choose a
maximum number of intervals, one from each job, such that the resulting
choices form an m-colorable interval graph. We show the single-machine
case to be fixed-parameter tractable in terms of the maximum number of
overlapping rows. We also use a concatenation operation on strip graphs
to reduce the m-machine case to the 1-machine case. This shows that m-
machine JISP is fixed-parameter tractable in the total number of jobs.

1 Introduction

1.1 Strip Graphs

Strip graphs are a generalization of interval graphs. They are defined by an inter-
val graph combined with an equivalence relation on the intervals. For example,
we can map different jobs assigned to a machine as an interval graph and allow
each equivalence class to be made up of jobs belonging to the same user. In this
case, two vertices have an edge between them if either their intervals intersect
or they belong to the same equivalence class. We can look at this as the union of
two graphs: an interval graph and a graph of equivalence classes, representable
as a set of disjoint cliques. Note that we can represent a set of disjoint cliques as
an interval graph as well: if we enumerate the cliques, the interval [i − 1, i) can
be assigned to each vertex of clique i. By using this representation we see that
any such graph can be defined by taking the union of two interval graphs, one
of which is a set of disjoint cliques. Such a graph is called a strip graph, which
refers to the rectangle graph representation of graphs formed by the union of two
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interval graphs, defined by Bar-Yehuda et al. in [BYHN+06]. In this representa-
tion, each vertex is represented on the 2-dimensional plane by an axis parallel
rectangle, the vertical side of which is of length 1. The two interval graphs are
formed by projecting the sides of the rectangles onto each axis, such that two
vertices are adjacent if their corresponding intervals in either of these projections
intersect. Throughout this paper, we will assume that all intervals are half-open
(open on top).

Gyárfás and West defined a t-track (t-union) graph to be the edgewise union
of t interval graphs. Since strip graphs can be represented by two interval graphs,
they form a subclass of the 2-union graphs. In [GW95], it was shown that recog-
nizing 2-union graphs is NP-complete. Since we are dealing with only a re-
stricted class of the 2-union graphs, we are interested in seeing if recognition
is NP-complete for this subclass as well. To form the sharpest bound possible
between P and NP , we will define a graph as a k-strip graph if it is representable
as a strip graph such that all strips are of length k and each interval has integral
start- and endpoints. Clearly, k-strip graphs are a subclass of strip graphs. We
will show that the class of 1-strip graphs is precisely equivalent to the class of
line graphs of bipartite graphs and is therefore recognizable in polynomial time,
but recognition of strip graphs is NP-complete, even when restricted to k-strip
graphs, for any k ≥ 2.

The reduction is from the problem of determining whether a triangle-free
cubic graph is Hamiltonian, which was shown in [WS84] to be NP-complete.
We prove in Sect. 3 that the removal of an edge e from any triangle-free cubic
graph will form a strip graph if and only if the original graph has a Hamiltonian
cycle going through edge e.

1.2 Strip Graph Applications

Interval graphs are often used in scheduling, but they only give information in
the time dimension. Modeling more complex relations requires more complex
structures. One classic scheduling problem is scheduling the maximum number
of jobs in a non-conflicting manner on a single machine, given multiple possible
run-times for each job. This problem is commonly referred to as the Job Interval
Selection Problem (JISP) and has results going as far back as a 1982 paper by
Nakajima and Hakimi [NH82]. By considering each possible run-time for each
job as a vertex, and defining equivalence classes of intervals contained in the
same job, we can model this problem with a strip graph. While JISP and the
generalizations we consider in this paper have been recently studied, most of the
research looks at JISP as being a problem on sets of intervals. We take a different
route by studying the problem from the perspective of strip graphs and using
structural observations of strip graphs to gain new insight into the problems.

Since each equivalence class is a clique, any independent set of this strip
graph can only contain one interval from each job. Therefore, the maximum in-
dependent set of the strip graph is the maximum number of jobs that can be
run on each machine. We show in Sect. 4 that finding the maximum independent
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set of a strip graph is fixed-parameter tractable in the maximum number of jobs
with overlapping windows. This idea of job windows is similar to the one used
in Chuzhoy et al. [COR01], where they showed that the MIS is computable in
pseudo-polynomial time if the size of the job window is small in comparison to
the size of the job.

A simple extension to this problem is scheduling the maximum number of jobs
in a non-conflicting manner on multiple machines. We will show in Sect. 5 how
this is reduced to the single-machine case by generating an instance of single-
machine JISP involving concatenated copies of the input graph. We also analyze
what effect this has on the running time of our JISP algorithm.

2 Preliminaries

2.1 Definitions and Notation

Given a strip graph G, we define G to be the union of two interval graphs, G1

and G2, such that G1 contains only intervals of length 1 and G2 is a regular
interval graph. For any subgraph H ⊂ G, we will use the standard notation
V (H) to refer to the vertex set of H . For any set V ′ ⊂ V (G), we will use G(V ′)
to refer to the subgraph of G induced by V ′.

Let v be a vertex in a strip graph. We need to know three properties to define
v’s position. We define, for any vertex v, ρv to be an integer such that v is
represented by the interval [ρv, ρv + 1) in G1. We define sv and fv to be the
start- and endpoint of v’s interval — that is, values such that v is represented
by the interval [sv, fv) in G2. When represented as a rectangle graph, we can
think of ρv as being the “row” containing the rectangle v. We can then define v
as being adjacent to another vertex w if either ρv = ρw — in which case we say
v is a 1-neighbor of w — or [sv, fv) ∩ [sw, fw) �= ∅, in which case there are four
options, outlined below.

Assume [sv, fv)∩ [sw, fw) �= ∅. We say v is a left neighbor of w and w is a right
neighbor of v if sv < sw < fv < fw. Otherwise, we say v is an internal neighbor
of w and w is an external neighbor of v if sw ≤ sv < fv ≤ fw. We note that if w
and v are identical intervals, then v can be considered both an internal and an
external neighbor of w. See Fig. 1.

Fig. 1. Vertex a is a 1-neighbor of b, a left-neighbor of c and an internal neighbor of d
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3 Hardness of Recognition

3.1 1-Strip Graphs

Remember that a 1-strip graph is defined such that each interval in G2 is of
length 1 and has integral start- and endpoints. The polynomial recognizability
of 1-strip graphs follows from the following theorem, mentioned in [HRST99].
The formal proof is quite simple, and the proof is left to the reader. For now, we
simply refer to Fig. 2. Since line graphs of bipartite graphs can be recognized in
linear time [Leh74], the result follows instantly.

Fig. 2. The 1-strip graph (b) is the line graph of the bipartite graph (a)

Theorem 1. A graph G is a 1-strip graph if and only if G is the line graph of
a bipartite graph.

3.2 Strip Graphs

West and Shmoys [WS84] showed that the problem of determining whether a
triangle-free cubic graph is Hamiltonian is NP-complete. They used this to
show that recognizing 2-interval graphs is NP-complete. West also used this to
show, with Gyárfás, that recognition of 2-union graphs is NP-complete [GW95].
We now use this problem to show that recognizing strip graphs is NP-complete.
What makes our reduction different from the reductions mentioned above is that
we have to pay special attention to the lengths of the intervals in the graphs. Nei-
ther the reduction from [WS84] nor the reduction from [GW95] applies directly
to graphs where one of the intervals is assumed to be of length 1. Additionally,
those reductions don’t give a boundary between when recognition is in P and
when it is in NP . By additionally considering the length of the intervals of G2,
we can give a restriction that allows recognition in polynomial time, and show
that no similar restriction on length is recognizable in polynomial time unless
P = NP .



Strip Graphs: Recognition and Scheduling 141

The following theorem shows that determining whether a triangle-free cu-
bic graph is Hamiltonian reduces to strip graph recognition. Therefore, we can
conclude that recognizing strip graphs is NP-complete.

Theorem 2. A triangle-free cubic graph G is Hamiltonian if and only if there
exists an edge e such that G \ {e} is a strip graph.

Proof. Assume a graph G is cubic, triangle-free and Hamiltonian. G is a graph on
n vertices. Let C be the graph’s Hamiltonian cycle, choose an arbitrary starting
vertex v1 and an arbitrary direction for C, and label the remaining vertices in
order with the labels v2, v3, . . . , vn. We know that the remaining edges must
form a perfect matching, which we denote by M . For any vertex vi, we denote
by M(vi) the vertex matched to vi in M . We now remove the edge connecting
v1 to vn and show that the remaining graph, denoted by G′, must be a strip
graph.

We begin by forming G′
2. With the removal of (vn, v1), C becomes a Hamil-

tonian path in G′, which can be represented with intervals of length 2 by repre-
senting each vi with the interval [i − 1, i + 1). This defines G′

2. The remaining
edges, as we saw above, form a perfect matching, so M can be represented with
length 1 intervals in G′

1 by representing each vi and M(vi) with the interval
[i− 1, i). To avoid placing two intervals for each vertex, this operation only hap-
pens when vi is of a lower index than M(vi). This defines G′

1, and the union of
G′

1 and G′
2 clearly forms G′.

Figure 3(b) shows how this transformation works for a triangle-free cubic
Hamiltonian graph on 6 vertices after removing the edge (v6, v1). The first set
of intervals defines G′

2 as a Hamiltonian path, and the second set of intervals
defines G′

1 as a perfect matching. Figure 3(c) then shows how this strip graph is
represented as a rectangle graph.

For the other direction, assume the removal of some edge (v, w) creates a strip
graph, which we again call G′. Note that since G2 is an interval graph, it must
have at least two simplicial vertices — that is, vertices that have a neighborhood
covered by at most one clique in G2. Two of these vertices must be represented
by the earliest-ending and latest-starting intervals in G2. We also know that
any vertex in G has a neighborhood covered by one clique in G1. Therefore, the
neighborhoods of the simplicial vertices of G2 are covered by 2 cliques in G. Since
G is triangle-free, these vertices have degree at most 2. Therefore, since v and
w are the only two vertices of degree 2, they must be the simplicial (rightmost
and leftmost) vertices of G2.

Let v’s neighbor in G′
2 be the vertex z. We know that z’s other neighbor in

G′
2 cannot be internal unless that neighbor is of degree at most two, so we that

neighbor has to be a right neighbor, itself of degree 3. The degree-3 vertices must
form a path, which cannot end until it hits a vertex of degree 2, which must then
be w. Since w is the vertex with the rightmost endpoint in G′

2, every vertex in G′

must appear between v and w. If there exists some vertex p of degree 3 that does
not appear on the path between v and w, then it must be an internal neighbor
of some vertex on the path (because G′

2 is triangle-free), which means p must be
of degree 2, which is a contradiction. We conclude that every degree-3 vertex in
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Fig. 3. (a) A cubic triangle-free Hamiltonian graph on 6 vertices. (b) Removing one
edge allows us to represent the remaining graph as a strip graph. (c) The rectangle
graph representation.

the graph must appear on the path between v and w. That is to say, the path is
Hamiltonian.

We note that v1 was chosen arbitrarily, and therefore any edge of the Hamiltonian
cycle can be removed to create G′. For any given vertex v, we know that two of
the three edges connected to v are present in any Hamiltonian cycle. Therefore,
we have to select two of the edges in v. If the removal of either one creates a strip
graph, then G is Hamiltonian. A polynomial-time algorithm to check these two
cases in parallel gives a polynomial-time reduction from the Hamiltonian cycle
problem on triangle-free cubic graphs to the strip graph recognition problem. We
conclude by noting that the proof of the above reduction implies that recognition
of k-strip graphs is NP-complete for all k ≥ 2.

Corollary 3. Recognition of strip graphs is NP-complete. Additionally, recog-
nition of k-strip graphs is NP-complete for any k ≥ 2.

4 Scheduling Applications of Strip Graphs

To see how strip graphs apply to scheduling problems, we first contrast them with
t-interval graphs. Consider a set of jobs, each consisting of multiple intervals.
These jobs can each be represented by a row in a strip graph. In the t-interval
representation, each row would be contracted to a single vertex. This is useful
for applications where jobs are split up over multiple intervals, and selecting a
job means selecting all of its intervals. In the strip graph representation, on the
other hand, each interval is a vertex, which is useful in situations that require
access to individual intervals of each job. The classic example of this is the Job
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Interval Selection Problem, or JISP, where each job only requires one interval of
processing time, and the multiple intervals represent possible run-times.

The input to this problem is a set of jobs, called a request. Each job is com-
prised of multiple intervals, each representing a possible run-time for the job.
The objective is to run as many jobs as possible such that no two conflict — that
is, select at most one interval from each row such that we select the maximum
number of intervals possible such that no two overlap. This selection of intervals
is referred to as a schedule and is preciely equivalent to the Maximum Indepen-
dent Set (that is, the largest set of mutually non-adjacent vertices, abbreviated
MIS) of the corresponding strip graph.

In this section, we will give an exact algorithm for JISP / MIS of strip graphs
that runs in exponential time. We will then consider how this algorithm applies
to JISP in a multiple-machine environment.

4.1 Maximum Independent Set

The Maximum Independent Set problem is known to be NP-complete for 2-strip
graphs [CS96], implying the NP-completeness of the problem on strip graphs.
In this section, we will show that finding the maximum independent set is fixed-
parameter tractable in the number of overlapping ”liveness windows.” In the
following, assume G is a strip graph on n vertices.

We define R to be the partition of G1 into its connected components. That is,
each member of R is a row of G. Define C = max{fv|v ∈ G}. Then the rectangle
representation of G is mapped onto an |R| × C grid. For a given subset R ⊂ R,
we let GR represent the subgraph of G induced by the rows in R, and for each
integer y ≤ C, we let Gy represent the subgraph of G induced by all vertices
ending at or before point y in the interval representation of G2. That is, for any
R ∈ R and y ≤ C, GR

y = G({v ∈ V (G)|v ∈ R, fv ≤ y}).
We store the intermediate results in a matrix M , where M [R, y] is the size of

the MIS of the graph GR
y , for y ≤ C an integer, and R ⊂ R a set of rows. At

position y, there are two possibilities:

– We can add a vertex v with endpoint y = fv. If this case gives the MIS, then
M [R, fv] is given by M [R \ {ρv}, sv] + 1.

– No vertex with endpoint y is a member of an MIS of GR
y . If this is the case,

then M [R, y] = M [R, y − 1].

We point out that the only interesting values in the above formulation are the
start- and endpoints of vertices in G. Since any interval graph can be represented
such that all intervals have distinct start- and endpoints, we can assume that this
is the case. Therefore, we store all start- and endpoints in an increasing sequence,
y1, y2, . . . , y2n. Note that since we’re only considering start- and endpoints, we
can essentially drop the integrality constraints on G2.

Using this assumption, and the two possibilities above, the dynamic program-
ming relation is given with:

M [R, yi] = max{M [R, yi−1], M [R \ {ρv}, sv] + 1}
where yi is the endpoint of vertex v (if such a v exists).
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To determine the minimum worst-case complexity, we need to determine how
many rows need to be checked at each point yi. For each row r, r is defined to
be live at all points between the endpoint of its first interval and the endpoint
of its last interval. Let Lt ⊂ R be the set of live rows at point t and define
Q = maxt≤C |Lt|. Similarly, a row is defined to be dead at all points after the
endpoint of its last interval. Let Dt ⊂ R be the set of all dead rows at point t.
At each start- or endpoint y on the axis, there are two steps to the calculation.

We first compute M [R ∪ Dy, y] for all R ⊂ Ly. To understand why we can
limit the calculations to this set of rows, consider a row r that is live on the
interval [a, b]. If y < a, then no independent set of Gy includes row r because
that row is empty, so r is never included. If, on the other hand, y > b, then any
independent set of Gy has to consider row r; there is no need to defer the choice
to a point further down the axis, because r has no intervals past b. This step is
completed in time at most O(2Q).

For the second step, consider a vertex v starting at point y. When we reach the
endpoint of that vertex, we’re going to need to be able to check M [R′ ∪ Dfv , y]
for all R′ ⊂ Lfv . To do this, we merely iterate through each subset R′ ⊂ Lfv ,
and set

M [R′ ∪ Dfv , y] = M [(R′ ∪ Dfv ) ∩ (Ly ∪ Dy), y]

this step is completed in time at most 2|Lfv |. Since each point we consider is the
startpoint of at most one vertex, the computation time for step 2 at any point
y is at most O(2Q).

Since we only consider at most 2 · n start-/endpoints of intervals, M can be
generated with a total time complexity of O(n · 2Q). To generate the MIS from
the table M , we merely need to work backwards from C.

Assume the MIS of G is found to be of size k. We then find a vertex v such
that M [Lfv ∪ Dfv , fv] = k and M [(Lfv ∪ Dfv ) \ {ρv}, sv] = k − 1. If we work in
decreasing endpoint order, we only need to look at each vertex once, and choose
the first one that fits. We add v to the set S and then repeat the procedure for
the strip graph G

(Lsv∪Dsv )\{ρv}
sv , which we know has an MIS of size k− 1. Using

recursion, we get an independent set S of maximum size k in time O(n). The
MIS problem is now clearly fixed-parameter tractable in Q.

Theorem 4. For a strip graph G, define Q to be the maximum number of live
rows overlapping at any point. The above algorithm then finds a maximum in-
dependent set of G in time O(n · 2Q).

We conclude with two observations. First, we note that it is easy to generalize
this algorithm to the Maximum Weighted Independent Set (MWIS) problem.
In that case, each vertex v has a weight wv, and the objective is to find an
independent set such that the sum of the weights of all the vertices in the IS is
maximized. The recursive formulation is then given by

M [R, yi] = max{M [R, yi−1], M [R \ {ρv}, sv] + wv}
where yi is the endpoint of vertex v (if it exists). The rest of the algorithm then
works as described above.
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Secondly, we note that a row consisting of only one interval is live at exactly
one point. By assuming distinct endpoints for each interval, two rows that each
consist of only one interval are never live at the same time. Therefore, our al-
gorithm for MWIS reduces precisely to the classic linear-time DP algorithm for
weighted independent set in interval graphs.

5 Multiple Machines

JISP is generalized by assuming that we have m machines running in parallel.
The problem then becomes one of finding a maximum-value m-colorable subset
of the input graph, which we call an m-schedule. This section will focus on
reducing the m machine case to the 1-machine case and analyzing what effect
this has on the above algorithm.

Assume we are given as input a strip graph G and asked to calculate the value
of JISP for m machines. We define a new graph G∗m and show that the value
of JISP for 1 machine on G∗m is equivalent to the value of JISP for m machines
on G. G∗m is defined by making m identical copies of G such that the only
edges between copies are between all intervals that belong to the same job. This
creates a new strip graph, formed by making m identical copies of G’s rectangle
represenation along the horizontal axis. This transformation is shown in Fig. 4.

1 machine

→
2 machines

Fig. 4. A request simulated on 2 machines

Theorem 5. G has a maximum m-schedule of size k if and only if G∗m has a
maximum independent set of size k.

Proof. Assume S is a maximum m-schedule and let k = |S|. We enumerate the
color classes of S with S1, S2, . . . , Sm. Each Si is an independent set. G∗m is a
concatenation of m identical requests (which we can refer to as “subrequests”),
with edges between intervals belonging to the same job. Therefore, we can choose
the vertices of S1 for the first subrequest of G∗m, the vertices of S2 for the second
subrequest, and so on. Call this set of vertices S′. Clearly S′ is an independent
set of G∗m.

Assume now that a larger independent set of G∗m exists, which we call T ′.
Since G∗m is formed by taking m copies of G, we can enumerate the copies (in
left-to-right order) by G∗m

1 , G∗m
2 , . . . , G∗m

m . For each Ti, i ∈ {1, . . . , m}, let Ti be
the vertices of G corresponding to the vertices of T ′ ∩ G∗m

i . Clearly, each Ti is
an independent set and the union of all the Ti’s forms an m-schedule. But this
contradicts the assumption that S is a maximum m-schedule.
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The following corollary is then obtained by observing that for any G∗m, m ≥ 2,
every job is live at the point between the first and second machines. In the
terminology of Sect. 4, the running time of the algorithm on m machines is
O(mn · 2|R|).

Corollary 6. JISP on m machines, m ≥ 2, is fixed-parameter tractable in the
number of jobs.
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