
TBA*: Time-Bounded A* ∗

Yngvi Björnsson
School of Computer Science

Reykjavik University
yngvi@ru.is

Vadim Bulitko and Nathan Sturtevant
Department of Computing Science

University of Alberta
{bulitko,nathanst}@cs.ualberta.ca

Abstract
Real-time heuristic search algorithms are used for
planning by agents in situations where a constant-
bounded amount of deliberation time is required for
each action regardless of the problem size. Such al-
gorithms interleave their planning and execution to
ensure real-time response. Furthermore, to guar-
antee completeness, they typically store improved
heuristic estimates for previously expanded states.
Although subsequent planning steps can benefit
from updated heuristic estimates, many of the same
states are expanded over and over again. Here
we propose a variant of the A* algorithm, Time-
Bounded A* (TBA*), that guarantees real-time re-
sponse. In the domain of path-finding on video-
game maps TBA* expands an order of magnitude
fewer states than traditional real-time search algo-
rithms, while finding paths of comparable quality.
It reaches the same level of performance as recent
state-of-the-art real-time search algorithms but, un-
like these, requires neither state-space abstractions
nor pre-computed pattern databases.

1 Introduction
In this paper we study the problem of real-time search where
an agent must repeatedly plan and execute actions within
a constant time interval that is independent of the size of
the problem being solved. This restriction severely lim-
its the range of applicable heuristic search algorithms. For
instance, static search algorithms such as A* [Hart et al.,
1968] and IDA* [Korf, 1985], re-planning algorithms such as
D* [Stenz, 1995], and anytime re-planning algorithms such
as AD* [Likhachev et al., 2005] cannot guarantee a constant
bound on planning time per action. LRTA* can, but with po-
tentially low solution quality due to the need to fill in heuristic
depressions [Korf, 1990; Ishida, 1992].

A common test-bed application for real-time search is
path-finding, both in real-world scenarios and on video-game
maps. For the latter, especially, there are strict real-time con-
straints as agents must react quickly regardless of map size
and complexity.

∗The support of RANNIS, NSERC and iCORE is acknowledged.

A major game developer we collaborate with imposes 1-3
ms planning limit for all simultaneously path-finding units,
which is too brief for traditional real-time search algorithms
to produce solutions of an acceptable quality. This has led to
the development of more advanced real-time heuristic search
algorithms that use various abstraction and pre-computation
mechanisms for boosting their performance [Bulitko et al.,
2007; 2008]. However, this approach can be problematic in
a dynamic game-world environment where the map structure
changes during play, invalidating the pre-computed informa-
tion (e.g., a new pathway emerges after trees are cut down or
one disappears when a bridge is blown up).

The main contribution of this paper is a new variation of
the classical A* algorithm, called Time-Bounded A* (TBA*),
that is better suited for real-time environments. Empirical
evaluation on video-game maps shows that the new algo-
rithm expands an order of magnitude fewer states than tra-
ditional real-time search algorithms, while finding paths of
equal quality. For example, it can achieve the same quality
solutions as LRTA* in 100 times less computation per ac-
tion. Alternatively, with the same amount of computation, it
finds the goal after 20 times fewer actions. TBA* reaches
a level of performance that is only matched by recent state-
of-the-art real-time search algorithms that rely on state-space
abstractions and/or pre-computed pattern databases for im-
proved performance. However, unlike this, TBA* does not
require re-computation of databases when the map changes.
We present the most general form of TBA* here, although it
can be seen as a paradigm for search that can be extended to
different algorithms.

2 Problem Formulation
We define a heuristic search problem as a finite weighted di-
rected graph (called search graph) with two states designated
as the start and goal. At every time step, a search agent has a
single current state (i.e., vertex in the search graph) changed
only by taking an action (i.e., traversing an outedge of the cur-
rent state). Each edge has a positive cost associated with it. A
heuristic function (or simply heuristic) takes a state as input
and returns an estimate on the cost to the goal state. A search
problem is then defined as a search graph, start and goal states
and a heuristic. We assume that the graph is safely explorable:
the goal state can be reached from any state reachable from
the start state.

S 1 2

G

(a)

(b)

(c)

Figure 1: An example of TBA* in action.

In video-game map settings, states are defined as vacant
square grid cells. Each cell is connected by an undirected
edge to adjacent vacant cells. In our empirical testbed, cells
have up to eight neighbors: four in the cardinal and four in
the diagonal directions, with costs 1 and

√
2, respectively.

Each search problem is solved as follows. A search agent
is deployed in the start state and takes actions (i.e., traverses
edges) until it reaches the goal state. The cumulative cost of
all edges traversed by an agent between the start and the goal
state is called the solution cost. Its ratio to the shortest path
cost is called solution suboptimality.

The real-time property requires a map-independent fixed
upper-bound on the amount of planning by an agent between
its actions. To avoid implementation and platform depen-
dency, the amount of planning computation is commonly
measured in the number of states expanded by an agent. A
state is called expanded if all of its neighboring states are
considered by an agent. The real-time cut-off is independent
of the graph size (assuming a constant-bounded maximum
outdegree in the graph). In this paper, we disqualify any al-
gorithms that exceed the cut-off on any action. We evaluate
search algorithms based on the number of states expanded
and solution suboptimality. These measures are antagonistic
insomuch as reducing suboptimality requires increased plan-
ning time per action and vice versa [Bulitko et al., 2007].

3 Time-Bounded A*
LRTA*-style heuristic-updating real-time search algorithms
described in the introduction satisfy the real-time constraint
and are complete (i.e., find a solution for any solvable search
problem as defined above). Their downside lies with ex-
tensive re-planning. For each action an LRTA*-style agent
essentially starts planning from scratch. Although being
somewhat more informed because of the information propa-
gated from previous planning steps in the form of an updated
heuristic, nonetheless, the agent will re-expand many of the
states expanded in the previous planning steps.

In contrast, A* with a consistent heuristic never re-expands
a state. However, the first action cannot be taken until an en-
tire solution is planned. As search graphs grow in size, the
planning time before the first action will grow, eventually ex-
ceeding any fixed cut-off. Consequently, A*-like algorithms
violate the real-time property.

We combine both approaches in a new algorithm, Time-
Bounded A* (TBA*). Namely, we achieve real-time opera-
tion while avoiding many state re-expansions of current real-
time search algorithms. The algorithm expands states in an

A* fashion, away from the original start state, towards the
goal until the goal state is expanded. However, whereas A*
plans a complete path before committing to the first action,
TBA* interrupts its search after a fixed number of state expan-
sions to act. The path from the most promising state on A*
open list (the one to be expanded next) is traced back towards
the start state (using A* closed list). The tracing stops early if
the traced path passes through the state where the agent is cur-
rently situated, in which case the agent’s next action is simply
to move one step farther along the newly traced path. In the
case when the agent is not on the path, the tracing continues
all the way back to the start state. The path that the agent was
following is rendered obsolete and the agent starts moving to-
wards this new path. There are several ways for accomplish-
ing that; the simplest one is to start backtracking towards the
start state until crossing the newly formed path, in the worst
case this happens in the start state (a more refined strategy is
introduced in a later section). The basic idea is depicted in
Figure 1. S is the start and G the goal, the curves represent
A* open list after each expansion time-slice, the small solid
circles (a), (b), (c) are states on the open lists with the lowest
f -value. The dashed lines are the shortest paths to them. The
first three steps of the agent are: S → 1 → 2 → 1. The
agent backtracks on the last step because the path to the most
promising state on the outermost frontier, labeled (c), did not
go through state 2 where the agent was situated at the time.

A key aspect of TBA* is that it retains closed and open lists
over its planning steps. Thus, on each planning step it does
not start planning from scratch like LRTA* but continues with
its open and closed lists from the previous planning step.

3.1 Algorithmic Details
The pseudo-code of TBA* is shown as Algorithm 1 on the
next page. The arguments to the algorithm are the start and
goal states and the search problem P . The algorithm keeps
track of the current location of the agent using the variable
loc. After initializing the agent location as well as several
boolean variables that keep track of the algorithm’s internal
state (lines 1-4), the algorithm enters the main loop where
it repeatedly interleaves planning (lines 6-20) and execution
(lines 21-31) until the agent reaches the goal.

The planning phase proceeds in two steps: first, a fixed
number (NE) of A* state expansions are done (lines 6-8).
Second, a new path to follow, pathNew, is generated by
backtracing the steps from the most promising state on the
open list back to the start state. This is done with A* closed
list contained in the variable lists which also stores A* open
list thereby allowing us to run A* in a time-sliced fashion.
The function traceBack (line 13) backtraces until reaching
either the current location of the agent, loc, or the start state.
This is also done in a time-sliced manner (i.e., no more than
NT trace steps per action) to ensure real-time performance.
Thus, the backtracing process can potentially span several ac-
tion steps. Each subsequent call to the traceBack routine
continues to build the backtrace from the front location of the
path passed as an argument and adds the new locations to the
front of that path (to start tracing a new path one simply re-
sets the path passed to the routine (lines 10-12). Only when
the path has been fully traced back, is it set to become the

Algorithm 1 TBA* (start, goal, P)
1: solutionFound← false
2: solutionFoundAndTraced← false
3: doneTrace← true
4: loc← start
5: while loc 6= goal do
6: if not solutionFound then
7: solutionFound← A∗(lists, start, goal, P, NE)
8: end if
9: if not solutionFoundAndTraced then

10: if doneTrace then
11: pathNew ← lists.mostPromisingState()
12: end if
13: doneTrace← traceBack(pathNew, loc, NT)
14: if doneTrace then
15: pathFollow ← pathNew
16: if pathFollow.back() = goal then
17: solutionFoundAndTraced← true
18: end if
19: end if
20: end if
21: if pathFollow.contains(loc) then
22: loc← pathFollow.popFront()
23: else
24: if loc 6= start then
25: loc← lists.stepBack(loc)
26: else
27: loc← loc last
28: end if
29: end if
30: loc last← loc
31: move agent to loc
32: end while

new path for the agent to follow (line 15); until then the agent
continues to follow its current path, pathFollow.

In the execution phase the agent does one of two things as
follows. If the agent is already on the path to follow it simply
moves one step forward along the path, removing its current
location from the path (line 22).1 On the other hand, if the
agent is not on the path — for example, if a different new
path has become more promising — then the agent simply
starts backtracking its steps one at a time (line 25). The agent
will sooner or later step onto the path that it is expected to
follow, in the worst case this will happen in the start state.

Note that one special case must be handled. Assume a very
long new path is being traced back. In general, this causes no
problems for the agent as it simply continues to follow its
current path until it reaches the end of that path, and if still
waiting for the tracing to finish, it simply backtracks towards
the start state. It is possible, although unlikely, that the agent
reaches the start state before a new path becomes available,
thus having no path to follow. However, as the agent must
act, it simply moves back to the state it came from (line 27).

3.2 Properties
Real-time property. The number of state expansions and
backtraces performed for each action step is bounded. This is

1It is not necessary to keep the part of the path already traversed
since it can be recovered from the closed list.

sufficient to claim real-time behavior provided that the time it
takes to expand or backtrace each state is constant-bounded.
In TBA* the open and closed lists grow between action steps,
so subsequent planning steps work with larger lists. However,
as discussed in the next subsection, a careful choice of data-
structures still enables (amortized) constant time operation.

Completeness. The algorithm expands states in the same
manner as A* and is thus guaranteed to find a path from the
start state to the goal provided that one exists. The algorithm
does additionally guarantee that the agent will get on this so-
lution path and subsequently follow it to the goal. This is
done by having the agent backtrack towards the start state
when it has no path to follow; during the backtracking pro-
cess the agent is guaranteed to walk onto the solution path
A* found — in the worst case this will be at the start state.
TBA* is thus complete.

Memory complexity. The algorithm uses the same state-
expansion strategy as A*, and consequently shares the same
memory complexity: in the worst case the open and closed
lists will cover the entire state space. Traditional heuristic
updating real-time search algorithms face a similar worst-
case scenario as they may end up having to store an updated
heuristic for every state of the search graph.

3.3 Implementation Details
In this section we cover several important implementation de-
tails. First, in the pseudo-code the state-expansion and state-
tracing resource bounds are shown as two different parame-
ters, NE and NT , respectively. In practice we use only one
resource limit,R, to be able to specify the same resource limit
to other real-time search algorithms thereby making perfor-
mance comparisons meaningful. For such algorithms the re-
source limit R will be used up entirely for state expansions,
whereas in TBA* it must be shared between state expansions
and backtracing operations. The number of state expansions
is defined as:

NE = bR× rc
where r ∈ [0, 1] is the fraction of the resource limit R to use
for state expansions. The remaining resources are alloted to
NT backtracing steps as:

NT = (R−NE)× c
where the multiplication constant c accounts for the relative
cost of a state expansion compared to a state backtracing (e.g.,
a value of 10 indicates that one state expansion takes ten times
more time to execute than a backtracing step). In many do-
mains backtracing can be implemented as a much faster op-
eration than a state expansion simply because it usually in-
volves following a single pointer in the closed list as opposed
to generating multiple successor states. Another minor en-
hancement not shown in the pseudo-code is that after A* finds
a solution no more expansions are necessary. Thus, we then
fully allocate the R limit to backtracing operations.

The choice of data structures for storing the paths
(pathFollow and pathNew) and A* is crucial for the real-
time constraint. For the paths we must be able to answer
membership queries in constant time (line 21). This is eas-
ily accomplished by storing all locations on each path ad-

S

G

AS

G

A

(i)

Figure 2: TBA* without and with shortcut enhancement.

ditionally in a hash table.2 Likewise, the A* closed list is
not a problem as it can be kept in a hash table indexed by
state identification number. However, a standard implemen-
tation of the open list consists of not only a hash table for
membership queries but also a priority queue for finding the
most promising state. The priority queue is typically imple-
mented using a heap. The insertion and deletion complexity
of a heap is O(log n), where n is the heap size. In TBA* we
keep growing the open list between actions, so n increases
proportionally to the solution length. For practical purposes
a logarithmic growth rate may be acceptable. However, to le-
gitimately claim real-time performance, TBA* open list op-
erations must be performed in (amortized) constant time in-
dependent of list size. This can be done by using a hash table
to bucket the open list by f -values of its states [Dial, 1969;
Björnsson et al., 2005].

Finally, for the very first action we must guarantee that the
planned path A* found can be traced back to the start state in
that same planning phase for otherwise the agent would have
no path to follow. This can be done in several ways, the sim-
plest one is to call A* on this first step with a state-expansion
limit of min(NE , NT) instead of NE . A more sophisticated
approach is to have A* monitor the longest path expanded so
far, and terminate when either the number of state expansions
exceeds NE or when the number of actions on the longest
path expanded equals NT . The choice between these two
strategies is unlikely to have an impact on TBA* overall per-
formance as it affects only the first action.

3.4 Enhancements
One of the main design goals of TBA* was to keep the algo-
rithm as simple as possible, to make it a suitable benchmark
algorithm. We have extended it with two optional enhance-
ments, both inspired by visual observations of the algorithm
in practice.

The first is a more informed backtracking strategy, as the
default strategy sometimes backtracks unnecessarily far. Fig-
ure 2 demonstrates a scenario where this happens. There are
two corridors leading to the goal (marked with G) separated
by a wall, but with an opening halfway. Presume that the
agent (A) is already halfway down the left-side corridor when
the optimal path, via the right corridor, is found. An agent us-
ing the basic TBA* backtracks all the way to the start location
(S) before beginning to follow the optimal right-side path, de-
spite there being an obvious shortcut to take through the open-
ing in the wall. This is a contrived example and not likely to

2Hash tables with imperfect hashing guarantee amortized real-
time operation at best. This is a common “wrinkle” in real-time
heuristic search analysis and applies to most existing algorithms.

happen often in practice on typical game-world maps, how-
ever, when occurring it leads to blatantly irrational behavior.
We thus extended TBA* to actively look for shortcuts on each
backtracking step once an optimal path is found. Specifically,
an (expansion-bounded) A* search is performed as follows:
the locations on the optimal path between the goal and the
intersection point with the agent’s current path are inserted
onto the open list with an initial g value telling their true dis-
tance to the goal. By seeding with g values the search looks
for the shortcut that results in the shortest path to the goal, as
opposed to simply finding the shortest way to reach the op-
timal path. The target of the A* search is set to the agent’s
current location. If the search does not reach the agent within
the allotted resource limit, the backtracking step is performed
as usual; if the search reaches the agent’s location, however, a
shorter path to the goal is constructed from the shortcut path
found by the A* search and the tail of the optimal path (i.e.,
in the figure, from A to (i) and then from there to G).

The second enhancement addresses apparent indecisive-
ness of the agent, where it frequently switches between fol-
lowing two paths that alternate looking the best, resulting in it
stepping back and forth repeatedly. This behavior can be al-
leviated by instructing the agent not to switch to a new seem-
ingly better path unless it is significantly more promising than
the one it is currently following. We use the following rule of
thumb: for an agent to switch to a new path, the cumulative
cost of that path (its g-value) must be at least as high as of the
one that is currently being followed.

4 Empirical Evaluation
In this section we first define our empirical testbed. We then
compare TBA* (without enhancements) to existing classic,
contemporary state-of-the-art real-time search algorithms.
We then assess the enhancements separately, and, finally,
we analyze the performance of a trivial time-sliced A* that
moves randomly while a complete path is being computed.

4.1 Setup
Gridworld-based path-finding is one of the most popular do-
mains for testing real-time heuristic search algorithms. Re-
cent literature used video-game maps as opposed to less prac-
tically interesting randomly generated gridworlds. We use
three different maps modeled after game worlds from a pop-
ular real-time strategy game. The maps were scaled up to
512× 512 cells to increase the problem difficulty [Sturtevant
and Buro, 2005; Bulitko et al., 2008]. One hundred differ-
ent searches were performed on each map with start and goal
locations chosen randomly, although constrained such that
the optimal solution cost was between 230 and 320. Each
data-point we report below is thus an average of 300 differ-
ent path-finding problems (3 maps × 100 searches on each).
The heuristic function used by all the algorithms is the octile
distance, a natural generalization of the Manhattan distance
to diagonal actions (see e.g. [Sturtevant and Buro, 2005]).

4.2 TBA* versus Other Real-Time Algorithms
We compared the performance of TBA* against several well-
known real-time algorithms. A brief description of the algo-
rithms is given below as well as their parameter settings:

0 100 200 300 400 500 600 700 800

2

4

6

8

10

12

14

16

18

20

Mean number of states expanded per move

S
u

b
o

p
ti
m

a
lit

y
 (

ti
m

e
s
)

Upscaled maps Real!time cut!off: 1000

LRTA*

P LRTA*

K LRTA*

TBA*

Figure 3: TBA* compared to traditional real-time algorithms.

• LRTA* is Learning Real-Time A* [Korf, 1990]. For
each action it conducts a breadth-first search of a fixed
depth d around the agent’s current state. Then the first
action towards the best depth d state is taken and the
heuristic of the agent’s previous state is updated using
Korf’s mini-min rule. We used d ∈ {4, 5, . . . , 16}.
• P LRTA* is Prioritized LRTA* – a variant of LRTA*

proposed by Rayner et al. (2007). It uses a lookahead of
depth 1 for all actions. However, for every state whose
heuristic value is updated, all its neighbors are put onto
a priority queue, sorted by the magnitude of the update,
for deciding the propagation order. The control parame-
ter (queue size) took on {10, 20, 30, 40, 100, 250}.
• K LRTA* is a variant of LRTA* proposed by Koenig

(2004). Unlike the original LRTA*, it uses A*-shaped
lookahead search space and updates heuristic values for
all states within it using Dijkstra’s algorithm. The num-
ber of states that K LRTA* expands per action took on
{10, 20, 30, 40, 100, 250, 500, 1000}.
• TBA* is our Time-Bounded A*; the resource limit R

took on {10, 25, 50, 75, 100, 500, 1000} but the values
of r and c were fixed at 0.9 and 10 respectively.

In Figure 3 the run-time efficiency of the algorithms is plot-
ted. The x-axis represents the amount of work done in terms
of the mean number of states expanded per action, whereas
the y-axis shows the quality of the solution found relative to
an optimal solution (e.g., a value of four indicates that a so-
lution path four times longer than optimal was found). Each
point in the figure represents a run of one algorithm with a
fixed parameter setting. The closer a point is to the origin the
better performance it represents. Note that we imposed a con-
straint on the parameterization: if the worst-case number of
states expanded per action exceeded a cut-off of 1000 states3

then the particular parameter setting was excluded from con-
sideration.

The topmost curve in Figure 3 shows the performance of
LRTA* (for different lookahead depth values), the diamonds
plot the performance of P LRTA* and the asterisks plot K
LRTA* performance. The contemporary P LRTA* and K
LRTA* easily outperform the classic LRTA*, finding equally

3This is approximately the number of states that an optimized
implementation of real-time search algorithms is allowed to expand
for planning each action in video games.

0 5 10 15 20 25 30 35 40 45 50
1

1.1

1.2

1.3

1.4

1.5

Mean number of states expanded per move

S
u
b
o
p
ti
m

a
lit

y
 (

ti
m

e
s
)

Upscaled maps Real!time cut!off: 1000

D LRTA*

PR LRTA*

TBA*

Figure 4: TBA* compared to advanced real-time algorithms.

good solutions with approximately half the resources. How-
ever, the new TBA* algorithm dominates all others, perform-
ing more than an order of magnitude better.

Given the easy victory against the classic and contempo-
rary algorithms, we pitted TBA* against two state-of-the-art
search algorithms. They both use state abstraction and pre-
computation to improve performance and have been shown
particularly effective in path-finding on video-game maps.
The algorithms and their parameter settings are:

• PR LRTA* is Path Refinement Learning Real-Time
Search [Bulitko et al., 2007]. The algorithm runs LRTA*
with a fixed search depth d in an abstract space (ab-
straction level ` in a clique abstraction hierarchy [Sturte-
vant and Buro, 2005]) and refines the first action us-
ing a corridor-constrained A* running on the original
ground-level map. The control parameters are as fol-
lows: abstraction level ` ∈ {3, 4, . . . , 7}, LRTA* looka-
head depth d ∈ {1, 3, 5, 10, 15} and LRTA* heuristic
weight γ ∈ {0.2, 0.4, 0.6, 1.0}.
• D LRTA* is a variant of LRTA* equipped with dy-

namic search depth and intermediate goal selection [Bu-
litko et al., 2008]. For each map optimal search depths
as well as intermediate goals (or waypoints) were pre-
computed beforehand and stored in pattern databases.
State abstraction was used to reduce the amount of pre-
computation. We used the abstraction level of 3 (higher
levels of abstraction exceeded the real-time computation
cut-off threshold of 1000 nodes per action).

Figure 4 presents the results. To focus on the high-
performance area close to the center of origin, we limited the
axis limits and, as a result, displayed only a subset of PR
LRTA* and D LRTA* parameter combinations. In contrast to
the traditional real-time search algorithms, TBA* performs
on par with these state-of-the-art algorithms. However, un-
like these, it requires neither state-space abstractions nor pre-
computed pattern databases. This has the advantages of mak-
ing it both much simpler to implement and better poised for
application in non-stationary search spaces, a common con-
dition in video-game map path-finding where other agents or
newly constructed buildings can block a path. For example,
the data point that is provided for D LRTA*, although show-
ing a somewhat better computation vs. suboptimality tradeoff
than TBA*, is at the expense of extensive pre-computations
that takes hours for even a single map.

Table 1: Benefits of early acting in TBA*.
R 10 25 50 75 100 200 500 1000
E 3.83 2.10 1.49 1.31 1.21 1.09 1.03 1.01
L 4.21 2.32 1.64 1.43 1.30 1.15 1.06 1.02

4.3 TBA* Performance Analysis
The TBA* algorithm always follows the most promising path
towards the goal. When a new such path emerges the algo-
rithm, in its basic form, causes the agent simply to backtrack
its steps until reaching the new path. A major appeal of this
strategy is that it is both conceptually simple and easy to
implement (i.e., the already existing closed list can be used
for the backtracking). Keeping things simple fits well with
the goal of this work to introduce a simple, yet powerful,
real-time algorithm that can (among other things) serve as a
benchmark for real-time search algorithms in domains where
memory is not of a primary concern.

One can think of an even simpler strategy: instead of fol-
lowing a best path the agent simply moves back and forth
between the start state and a randomly chosen neighbor un-
til a complete solution path is found by A*. Although such
a strategy would be completely unacceptable in computer
games as the agent will appear not to follow user command,
it is nonetheless interesting to compare the computational ef-
ficiency of such a strategy to the one TBA* uses. Table 1
compares suboptimality of paths generated by “early acting”
of TBA* (row E) to “late acting” of a delayed A* (row L)
for different amount of planning time allowed per action (R).
The “late acting” strategy results in approximately 10% more
costly paths than the “early acting” one, although that dif-
ference diminishes with higher resource limits (explained by
fewer action steps until a solution is found). This result con-
firms that the agent on average already makes headway to-
wards the goal before a solution path is found.

We also investigated how the two enhancements we intro-
duced earlier affect the search (aforementioned experiments
used the basic version of TBA*). Having the agent look
out for a shortcut while backtracking resulted in insignificant
improvements in average solution suboptimality. Analyz-
ing the data revealed that despite multiple planning slices —
{700, 70, 7} for R={10, 100, 1000} respectively — in only
about 5% of the cases the agent was following an alterna-
tive path when the optimal one was found, and in most of
these cases no beneficial shortcuts existed. Nonetheless, this
improvement is important for video-game path-finding as un-
necessarily long backtracking can be visually jarring and even
a single incident can break the player’s immersion.

Our rule of thumb for path switching (i.e., the second en-
hancement) not only alleviated the indecisive behavior of the
agent, but also returned slightly shorter paths. For the smaller
R values (100 or less) the paths were about 2% shorter,
whereas for larger R values the stepping back and forth was
less of an issue in the first place.

5 Conclusions
The traditional approach to real-time heuristic search is for
the agent to plan from scratch at each action step, and update
heuristic values to ensure progress. This approach, although

both real-time and complete, comes at the cost of extensive
re-planning. In this paper we introduced TBA*, an adaptation
of the A* algorithm that guarantees a real-time response.

In our empirical evaluation in the domain of path-finding
on video-game maps the new algorithm outperformed clas-
sic and contemporary real-time algorithms by a large mar-
gin. Furthermore, it reached the same level of performance
as state-of-the-art real-time search algorithms. However, un-
like these, TBA* requires neither state space abstraction nor
pre-computed pattern databases. This makes it not only sub-
stantially simpler to implement but also better poised for ap-
plication to non-stationary problems, such as path-finding on
dynamically changing maps in video games.

Finally, the idea behind TBA* can be viewed as a general
approach to time-slicing heuristic search algorithms, and is
not limited to A*.

References
[Björnsson et al., 2005] Y. Björnsson, M. Enzenberger,

R. Holte, and J. Schaeffer. Fringe search: Beating A* at
pathfinding on computer game maps. In IEEE Symp. on
Comp. Intelligence in Games, pages 125–132, 2005.

[Bulitko et al., 2007] V. Bulitko, N. Sturtevant, J. Lu, and
T. Yau. Graph Abstraction in Real-time Heuristic Search.
JAIR, 30:51–100, 2007.

[Bulitko et al., 2008] V. Bulitko, M. Luštrek, J. Schaeffer,
Y. Björnsson, and S. Sigmundarson. Dynamic Control in
Real-Time Heuristic Search. JAIR, 32:419–452, 2008.

[Dial, 1969] R. B. Dial. Shortest-path forest with topological
ordering. Commun. ACM, 12(11):632–633, 1969.

[Hart et al., 1968] P.E. Hart, N.J. Nilsson, and B. Raphael. A
formal basis for the heuristic determination of minimum
cost paths. IEEE Trans. on Systems Science and Cyber.,
4(2):100–107, 1968.

[Ishida, 1992] T. Ishida. Moving target search with intelli-
gence. In AAAI, pages 525–532, 1992.

[Koenig, 2004] S. Koenig. A comparison of fast search
methods for real-time situated agents. In AAMAS, pages
864–871, 2004.

[Korf, 1985] R.E. Korf. Depth-first iterative deepening : An
optimal admissible tree search. AIJ, 27(3):97–109, 1985.

[Korf, 1990] R.E. Korf. Real-time heuristic search. AIJ,
42(2-3):189–211, 1990.

[Likhachev et al., 2005] M. Likhachev, D. Ferguson, G. Gor-
don, A. Stentz, and S. Thrun. Anytime dynamic A*: An
anytime, replanning algorithm. In ICAPS, pages 262–271,
2005.

[Rayner et al., 2007] D. C. Rayner, K. Davison, V. Bulitko,
K. Anderson, and J. Lu. Real-time heuristic search with a
priority queue. In IJCAI, pages 2372 – 2377, 2007.

[Stenz, 1995] A. Stenz. The focussed D* algorithm for real-
time replanning. In IJCAI, pages 1652–1659, 1995.

[Sturtevant and Buro, 2005] N. Sturtevant and M. Buro. Par-
tial pathfinding using map abstraction and refinement. In
AAAI, pages 1392–1397, 2005.

