
Preprint of paper: Theoretical Computer Science, vol. 252(1-2), 177–196.

Multi-Cut αβ-Pruning in Game-Tree Search

Yngvi Björnsson and Tony Marsland

University of Alberta, Department of Computing Science,
Edmonton AB, Canada T6G 2H1
{yngvi,tony}@cs.ualberta.ca

Abstract. The efficiency of the αβ-algorithm as a minimax search pro-
cedure can be attributed to its effective pruning at so-called cut-nodes;
ideally only one move is examined there to establish the minimax value.
This paper explores the benefits of investing additional search effort at
cut-nodes by also expanding some of the remaining moves. Our results
show a strong correlation between the number of promising move alterna-
tives at cut-nodes and a new principal variation emerging. Furthermore,
a new forward-pruning method is introduced that uses this additional
information to ignore potentially futile subtrees. We also provide exper-
imental results with the new pruning method in the domain of chess.

1 Introduction

The αβ-algorithm is the most popular method for searching game-trees in such
adversary board games as chess, checkers and Othello. It is much more efficient
than a plain brute-force minimax search because it allows a large portion of the
game-tree to be pruned, while still backing up the correct game-tree value. How-
ever, the number of nodes visited by the algorithm still increases exponentially
with increasing search depth. This obviously limits the scope of the search, since
game-playing programs must meet external time-constraints: often having only
a few minutes to make a decision. In general, the quality of play improves the
further the program looks ahead1.

Over the years, the αβ-algorithm has been enhanced in various ways and
more efficient variants have been introduced. For example, although the basic
algorithm explores all continuations to some fixed depth, in practice it is no
longer used that way. Instead, various heuristics allow variations in the distance
to the search horizon (often called the search depth or search tree height), so
that some move sequences can be explored more deeply than others. “Interest-
ing” continuations are expanded beyond the nominal depth, while others are
terminated prematurely. The latter case is referred to as forward-pruning, and
involves some risk of overlooking a good continuation. The rationale behind the

1 Some artificial games have been constructed where the opposite is true; when backing
up a minimax value the decision quality actually decreases with increasing search
depth. This phenomenon has been studied thoroughly and is referred to as pathology
in game-tree search [10]. However, such pathology is not seen in chess or the other
games we are investigating.

approach is that the time saved by pruning non-promising lines is better spent
searching others more deeply, in an attempt to increase the overall decision qual-
ity.

To effectively apply forward-pruning, good criteria are needed to determine
which subtrees to ignore. Here we show that the number of good move alterna-
tives a player has at cut-nodes can be used to identify potentially futile subtrees.
Furthermore, we introduce a new forward-pruning method, called multi-cut αβ-
pruning, that makes its pruning decisions based on the number of promising
moves at cut-nodes. In the minimax sense it is enough to find a single refutation
to an inferior line of play. However, instead of finding any such refutation, our
method uses shallow searches to identify moves that “look” good. If there are
several such moves, multi-cut pruning assumes that a cutoff will occur and so
prevents the current line of play from being expanded more deeply.

In the following section we give a brief introduction to game-tree searching,
and introduce necessary terminology and definitions. We introduce the basic
idea behind our new pruning scheme and provide a sound foundation for the
work. The pruning scheme itself has been implemented and tested in an actual
game-playing program. Experimental results follow; first the promise of the new
pruning criterion is established, and second the method is tested in the domain
of chess. Finally, before drawing our conclusions, we explain how some related
works use complementary ideas.

2 Game-Tree Search

We are concerned here with two-person zero-sum perfect information games. The
value of a such games is the outcome with perfect play by both sides, and can be
found by recursively expanding all possible continuations from each game state,
until states are reached with a known outcome. The minimax rule is then used to
propagate the value of those outcomes back to the initial state. The state-space
expanded in this way is a tree, often referred to as a game-tree, where the root
of the tree is the initial state and the leaf nodes are the terminal states.

2.1 Minimax

Using the minimax rule, Max, the player to move at the root, tries to optimize
its gains by returning the maximum of its children values. The other player, Min,
tries to minimize Max’s gains by always choosing the minimum value. However,
for zero-sum games one player’s gain is the other’s loss. Therefore, by evaluating
the terminal nodes from the perspective of the player to move and negating the
values as they back up the tree, the value at each node in the tree can be treated
as the merit for the player who’s turn is to move. This framework is referred to
as NegaMax [5], and has the advantage of being simpler and more uniform, since
both sides now maximize their values. We use this framework as the basis for
our subsequent discussion.

In theory, at least, the outcome of a game can be found as described above.
However, the exponential growth of game-trees expanded this way is prohibitively
time-expensive. Therefore, in practice, game-trees are only expanded to a limited
depth d and the resulting “leaf nodes” are assessed. Their values are propagated
back up the tree using the minimax rule, just as if they were true game-outcome
values. The rule for backing up these values can be defined as follows:

Definition 1 (vmm(n, d)). The minimax value, vmm(n, d), of a game-tree ex-
panded to a fixed depth d is:

vmm(n, d) =







f(n) if Sn ≡ ∅ or d = 0;

Maxi(−vmm(ni, d − 1)) ni ∈ Sn otherwise.

where f(n) is a scalar function that returns an estimate of the true value of
the game position corresponding to node n (relative to the side to move at that
point), and Sn is the set of all children (successors) of node n.

Note, the true value of these leaf nodes is normally not known, since the function
f(n) can usually only estimate the outcome. Typically, the estimate is a number
that measures the “goodness” of the state2. The exact meaning of the estimate
is not that important; the purpose is to provide a ranking of the leaf nodes. The
higher the value, the more likely the state is to lead to a win. Note, too, that as
d → ∞ the method reduces to a pure unbounded minimax search.

Algorithm 1 shows a function for calculating the minimax value of a depth-
limited game-tree. The function, MM(n, d), implements Definition 1.

Algorithm 1 MM(n, d)

1: S ← Successors(n)
2: if d ≤ 0 ∨ S ≡ ∅ then

3: return f(n)
4: best← −∞
5: for all ni ∈ S do

6: v ← −MM(ni, d− 1)
7: if v > best then

8: best← v

9: return best

2.2 The Minimal Tree and Alpha-Beta

It is not essential to investigate all branches of a game-tree to find its minimax
value; only a so-called minimal tree needs to be expanded. The minimax value
2 Sometimes terminal game positions are reachable within the search horizon, and the

estimates are exact in such cases. In chess, for example, (stale)mate are terminal
states with a known outcome.

depends only on the nodes in the minimal tree; no matter how the other nodes
are assessed, the value at the root does not change.

The minimal tree contains three types of nodes: pv-, cut- and all-nodes3.
More formally, we can determine the minimal tree as follows:

Definition 2 (Minimal tree). Every child of a pv-node or an all-node is a
part of the minimal tree, but only one child of a cut-node. Given any game-tree,
we can derive a minimal tree by identifying its nodes as follows:

1. The root of the game-tree is a pv-node.
2. At a pv-node, n, at least one child must have a minimax value −vmm(n)

(when there are several such children pick one arbitrarily). That child is a
pv-node, but the remaining children are cut-nodes.

3. At a cut-node, a child node n with a minimax value vmm(n) < vmm(npv)
is an all-node, where npv is the most immediate pv-node predecessor of n.
At least one child must have such a value; when there are several, pick one
arbitrarily.

4. Every child node of an all-node is a cut-node.

From the above definition it is clear that there may exist more than one mini-
mal subtree in any game-tree, because many children of cut-nodes may qualify
as belonging to a minimal tree. Figure 1 shows an example game-tree of uniform
width and a fixed depth of 3. The non-shaded nodes represent one possible mini-
mal tree. The letters P , C, and A represent pv-, cut- and all-nodes, respectively.

P

P

P

P

C

C

C C C

A

C

C

A

C C CC A A

C3

3

 -1 -2 -1-2 -1 -1

1

-1-2

 2

-3

-3 -2 -1 -5 -5

5 5

Fig. 1. Minimal tree

The αβ-algorithm, thoroughly analyzed by Knuth and Moore [5], is based
on the observation that the minimax value can be found from the search of any
minimal subtree. Once we have searched one child of some node n, the value

3 Knuth and Moore [5] called these type 1, type 2 and type 3 nodes, but here the more
descriptive terminology [8] of calling them pv-, cut- and all-nodes, respectively, is
used.

returned from that search is a lower-bound for the actual minimax value of n.
Moreover, this lower-bound is an upper-bound for our opponent, and can be
used to prune the subtrees of the remaining child nodes of n (that is, identify
those nodes that do not belong to the minimal tree). Intuitively, if the opponent
finds one continuation that makes the value of the current subtree inferior to
the lower-bound already established at n, there is no need to search further and
the current node becomes a cut-node. Algorithm 2, below, shows a NegaMax
formulation of the αβ-algorithm. It keeps track of the lower and upper bounds
that a player can achieve via two parameters named α and β, respectively. The
pruning condition is checked at lines 9-10. If a move returns a value greater
or equal to β, the local search terminates at that particular node; this is often
referred to as a β-cutoff (in the NegaMax formulation of the algorithm there is
no distinction between α and β cutoffs). To ensure that the value of the tree will
be found, the values of α and β are initialized to −∞ and ∞, respectively.

Algorithm 2 αβ(n, d, α, β)

1: S ← Successors(n)
2: if d ≤ 0 ∨ S ≡ ∅ then

3: return f(n)
4: best← −∞
5: for all ni ∈ S do

6: v ← −αβ(ni, d− 1,−β,−max(α, best))
7: if v > best then

8: best← v

9: if best ≥ β then

10: return best

11: return best

2.3 Alpha-Beta Enhancements

The performance of the αβ-algorithm is sensitive to the order in which nodes
in the tree are examined. In the worst case, it expands the same exhaustive
tree as the minimax algorithm, while in the best case only a minimal tree is
traversed. For the αβ-algorithm to achieve optimal performance the best move
must be expanded first at pv-nodes, but at cut-nodes any move sufficiently good
to cause a cutoff can be searched first4. Various heuristics are used to accomplish
a good move-ordering (see for example [13, 14]) and, over the years more efficient

4 Because of a non-uniform branching factor, local variability in the actual search depth
(through search extension/reduction), and the possibility of reaching the same state
via alternative paths (transpositions), the size of the many possible minimal trees
varies considerably. For efficiency, we would like to search first not only a move that
returns a value that is sufficient to cause a cutoff, but also one that leads to the
smallest subtree.

variants of the αβ-algorithm have been developed that take full advantage of
better move ordering. Algorithm 3, Principal Variation Search [6, 7] is one such
variant. PV S, the main driver, explores the expected pv-nodes, while the NWS

part visits the expected cut- and all-nodes, using the lower-bound established
in PV S to reduce its search. The true type of a node is not known until after
it has been searched. Therefore, during the search we refer to the node as an
expected pv-, cut- or all-node, depending on our current view of the structure of
the game-tree. The algorithm considers the first node explored at the root (and

Algorithm 3 PV S(n, d, α, β)

1: function PV S(n, d, α, β)
2: S ← Successors(n)
3: if d ≤ 0 ∨ S ≡ ∅ then

4: return f(n)
5: best← −PV S(n1 ∈ S, d− 1,−β,−α)
6: for ni ∈ S |i > 1 do

7: if best ≥ β then

8: return best

9: α← max(α, best)
10: v ← −NWS(ni, d− 1,−α)
11: if v > α ∧ v < β then

12: v ← −PV S(ni, d− 1,−β,−v)
13: if v > best then

14: best← v

15: return best

16: function NWS(n, d, β)
17: S ← Successors(n)
18: if d ≤ 0 ∨ S ≡ ∅ then

19: return f(n)
20: best← −∞
21: for all ni ∈ S do

22: v ← −NWS(ni, d− 1,−β + ε)
23: if v > best then

24: best← v

25: if best ≥ β then

26: return best

27: return best

at subsequent pv-nodes), to be a pv-node. The value of that node is therefore
treated as the best value, and all the siblings are searched using the NWS

routine to prove them inferior. Occasionally, one of the siblings returns a better
value and in that case the algorithm researches that node to establish the new
principal variation (lines 11–12). When calling NWS recursively (line 22) the β-
bound is adjusted by an amount equal to ε, the smallest granularity of the value
returned by the estimate function. For example, if f(n) returns integer values,

ε would be set equal to 1. In Section 5 we show how our new forward-pruning
method can be incorporated into the PV S algorithm.

2.4 Selective Search

All the algorithms described above traverse the game-tree in a depth-first man-
ner. That is, they fully explore each branch of the tree before turning their
attention to the next. They all return the same minimax value, the primary
difference is the search efficiency: where the more enhanced algorithms search a
smaller tree (always at least the minimal tree necessary for determining the min-
imax value is explored). There exists a different class of algorithms for searching
game-trees. These algorithms traverse the trees in a best-first fashion, and com-
monly search more selectively than depth-first methods. They temporarily stop
exploring branches to visit other more interesting subtrees, possibly later re-
turning to the abandoned branches to search them more deeply. However, these
best-first algorithms are generally not time- and space-efficient and so have not
found a wide use in practice. For an overview of these alternative approaches see
Junghanns [4].

Although, the term selective search has most often been associated with
best-first search, the depth-first algorithms can also be selective in practice. The
selectivity is introduced by varying the search horizon, some branches being
searched beyond the nominal depth, while others are pruned prematurely. The
former case is referred to as a search extension, and the second as forward-
pruning. As such, the search can return a value quite unlike that from a fixed
depth minimax search. In the case of forward-pruning, the full minimal tree
is not explored, and good moves may be overlooked. However, the rationale is
that although the search occasionally goes wrong, the time saved by pruning
non-promising lines is generally better used to search other lines deeper and
therefore, hopefully, to increase the overall decision quality. Our algorithm falls
into this latter category so far as selectivity is concerned.

3 Error Propagation

A forward-pruning scheme should only curtail the search if it is unlikely that
the pruned subtree contains a better continuation. But inevitably, any forward-
pruning method will once in a while make a wrong decision. However, we can
minimize the risk that such errors will affect our move choice at the root.

Figure 2 shows two different game-trees. The solid lines identify the parts of
the tree that have already been visited, while the dotted lines show nodes that
are still to be expanded. Assume that the search is currently situated at node n,
and that the subtree n1 has already been searched. Furthermore, assume that a
part of that subtree has been pruned using some forward-pruning technique, and
that the value returned is greater or equal to the β-bound used at node n (when
n is a cut-node this is what we would expect). Therefore, a cutoff occurs and
the value of the subtree n1 will back up to the root. From the root’s perspective

...
...

(b)(a)

... ...
n n

n1 n n1 2 nk

Fig. 2. Controlling error propagation

this branch is inferior to the current principal variation, and the search therefore
continues to expand the other children of the root without changing the principal
variation.

If the pruned subtree in Figure 2(a) does not contain a better line, search
effort has been saved. The case of interest here is: what if a better line is present?
In Figure 2(a), if a better line is overlooked, the value of n1 is wrong and the
error propagates through node n and may affect the root value. However, if
alternatives to n1 are present, as in Figure 2(b), it is possible that one of the
alternative subtrees n2, ..., nk may return a value that causes a cutoff at n.
Thus in Figure 2(b), an error in the subtree n1 does not necessarily propagate
to the root. This situation is common in practice: if the first move fails to cause
a cutoff, one of the alternative moves may do so. As a consequence, even though
the reduced search of n1 is risky, the danger of affecting the move decision at
the root is lower for the tree in Figure 2(b) than in Figure 2(a), because one of
the other subtrees n2 ..., nk might preserve the cutoff even if the reduced search
of n1 does not. Thus, even though the truncated search of n1 is in error it will
not necessarily affect the move decision at the root. This illustrates that, when
assessing risk, pruning methods should not only take into account the expected
return value of a pruned node, but also assess the likelihood that an erroneous
pruning decision will propagate up the tree. The idea underlying our pruning

method is partially based on this observation, and the method prunes only if
it considers it unlikely that an erroneous pruning decision will affect outcomes
closer to the root.

4 Multi-Cut Idea

In the traditional αβ-search, if a cutoff occurs there is no reason to examine
that position further, and the search can return. For a new principal variation to
emerge, every expected cut-node on the path from a leaf-node to the root must
become an all-node. In practice, however, it is common that if the first move
does not cause a cutoff, one of the alternative moves will. Therefore, expected
cut-nodes, where many moves have a good potential of causing a β-cutoff, are
less likely to become all-nodes, and consequently such lines are unlikely to be-
come part of a new principal variation. This observation forms the basis for the
new forward-pruning scheme we introduce here, multi-cut αβ-pruning. Before
explaining how it works, let us first define an mc-prune (multi-cut prune).

Definition 3 (mc-prune). When searching node n to depth d + 1 using αβ-
search, and if at least c of the first m children of n return a value greater or
equal to β when searched to depth d − r, an mc-prune is said to occur and the
local search returns.

In multi-cut αβ-search, we test for an mc-prune only at expected cut-nodes (we
would not anticipate it to be successful elsewhere). Figure 3 shows the basic
idea. At node n, before searching the subtree n1 to a full depth d, like a normal
αβ-search does, the first m successors of n are expanded to a reduced depth of
d − r. If c of them return a value greater or equal to β an mc-prune occurs and
the search returns the β value, otherwise the search continues as usual exploring
n1 to a full depth d. The subtrees of depth (d − r) below n2, ..., nm, represent
extra search overhead introduced by mc-prune. This overhead would not be
incurred by normal αβ-search. The dotted area of the subtree below node n1

represents the savings that are possible if the mc-prune is successful. However,
if the pruning condition is not satisfied, we are left with the overhead but no
savings. Clearly, by searching the subtree of n1 to a shallower depth, there is
some risk of overlooking a tactic that would result in n1 becoming the new
principal variation. We are willing to take that risk, because we expect at least
one of the c moves that returns a value greater or equal to β when searched to
a reduced depth, will cause a genuine β-cutoff if searched to a full depth.

5 Multi-Cut Implementation

Algorithm 4 is a pseudo-code version of null-window search (NWS) routine us-
ing multi-cut. The NWS routine is an integral part of the Principal Varia-
tion Search algorithm. Multi-cut could equally well be implemented in other
enhanced αβ-variants like NegaScout [11]. For clarity, we have omitted details

<_ <_

......

...

d

r
search reduction

m =
=

=

c

r

number of cut-offs needed
number of moves examined

n n nn

n

m1 2 k

1(c)m

Fig. 3. Applying the mc-prune method at node n

about search extensions, transposition table lookups, quiescence searches, null-
move searches, and history heuristic updates that are irrelevant to our discussion.
For an overview of some of these techniques see for example [7, 3]. The parameter
d is the remaining length of search for the position, and β is an upper-bound on
the value we can achieve. There is no need to pass α as a parameter, because
it is always equal to β − ε. On the other hand, the new parameter, cut, is true
if the node we are currently visiting is an expected cut-node, but is otherwise
false. In a null-window search we are dealing only with alternating layers of cut-
and all-nodes.

As is normal, the routine starts by checking whether the horizon has been
reached, and if so evaluates the position and returns its value. Otherwise, if we are
using a fully enhanced search routine, we would next look for useful information
about the position in the transposition table, followed by a null-move search. If
the null-move does not cause a cutoff, a standard null-window αβ search would
follow (lines 12–18). Instead, we insert here a multi-cut search (lines 4–11) to
see if the mc-prune condition applies. The parameters M , R, and C are mc-
prune specific and stand for: number of moves to look at (m), search reduction
(r), number of cutoffs needed (c), respectively. Although they are shown here as
constants, they could be determined dynamically and be allowed to vary during
the search.

We do not check for the mc-prune conditions at every node in the tree. First,
we only test for them at expected cut-nodes. Second, they are not applied at the

Algorithm 4 NWS(n, d, β, cut)

Require:

M is the number of moves to look at when checking for mc-prune.
C is the number of cutoffs to cause an mc-prune.
R is the search depth reduction for mc-prune searches.

1: S ← Successors(n)
2: if d ≤ 0 ∨ S ≡ ∅ then

3: return f(n)
4: if d ≥ R ∧ cut then

5: c← 0
6: for ni ∈ S | i = 1, ..., M do

7: v ← −NWS(ni, d− 1−R,−β + ε,¬cut)
8: if v ≥ β then

9: c← c + 1
10: if c = C then

11: return β

12: best← −∞
13: for all ni ∈ S do

14: v ← −NWS(ni, d− 1,−β + ε,¬cut)
15: if v > best then

16: best← v

17: if best ≥ β then

18: return best

19: return best

levels of the search tree close to the horizon, thus reducing the time overhead
involved in this method. Finally, there are some game-dependent restrictions that
apply, but are not shown in the pseudo-code. In our experiments in the domain
of chess (see later) the pruning is disabled when the endgame is reached, since
there are usually few viable move options there and the mc-searches are therefore
not likely to be successful. Also, the positional understanding of chess programs
in the endgame is generally poorer than in the earlier phases of the game. The
programs rely more heavily on the search to guide them in the ending, and any
forward-pruning scheme is therefore more likely to be harmful. Furthermore, the
pruning is not done if the side to move is in check, or if search extensions have
been applied for any of the three previous moves leading to the current position.

6 Multi-Cut Parameters

It is not clear how to select the most appropriate values for the parameters c,
m, and r. How they are set will affect both the efficiency and the error rate of
the search, each parameter influencing the search in its own way:

– Number of cutoffs (c):
The more cutoffs that are required for an mc-prune to occur, the safer the
method is. On the other hand, the higher the value is, the larger the tree

expanded. Not only does each check for mc-prune require more nodes to be
searched, but also the less often mc-prunings occur. Therefore, c should be
set large enough for the method to be safe, but still small enough to offer
substantial node savings.

– Number of moves (m):
The m parameter tells how many moves to investigate when checking for an
mc-prune. The higher m, the more likely it is that the pruning condition will
be met. However, each unsuccessful mc-prune search will be more expensive,
offsetting some of the node savings from the additional pruning. The right
balance between these two counter-acting effects will depend, among other
things, on the quality of the move ordering scheme used. The better the
scheme, the closer we can set m to c.

– Depth reduction (r):
The depth reduction factor r will influence the best settings for c and m; the
larger r is, the larger c and m can be. Obviously, if the goal is to improve
search efficiency, the depth reduced multi-cut searches must explore, in total,
fewer nodes than the full depth search they replace. Therefore, if r is very
small there is not much flexibility in choosing values for c and m. On the
other hand, too aggressive search depth reduction will make the search more
error-prone.

From the above discussion we see how intertwined the parameters are, altering
one will bias the selection of the others. It is impossible to analytically deter-
mine the most appropriate settings for the parameters, because not only do
they depend on different characteristics of the search-space, but also on various
properties of the game-playing program itself (e.g. the move-ordering scheme).
We empirically determined a suitable setting of these parameters for our exper-
iments.

7 Experimental Results

To test the idea in practice, multi-cut αβ-pruning was implemented in TheTurk5.
Three different kinds of experiments were performed. First, we verified the fea-
sibility of the idea by correlating the number of promising move alternatives at
cut-nodes to an actual cutoff occurring. Secondly, we experimented with differ-
ent multi-cut parameter settings to both give some insight into how they alter
the search, and to find an appropriate setting for our program. Finally, a ver-
sion of the program using multi-cut played several self-play matches against an
unmodified version of the program.

5 TheTurk is a chess program developed at University of Alberta by Yngvi Björnsson
and Andreas Junghanns.

7.1 Criteria Selection

The multi-cut idea stands or falls with the hypothesis that nodes having many
promising move alternatives are more likely to cause a β-cutoff than those with
fewer. We will refer to any node where a β-cutoff is anticipated as an expected
cut-node. Only after searching the node do we know if it actually causes a cutoff;
if it does we call it a True cut-node, otherwise a False cut-node. What we seek
is a scheme that accurately predicts which expected cut-nodes are False. We
experimented with the following four different ways of anticipating cut nodes:

1. Number of legal moves (NM):
The most straight-forward approach is simply to assume that every move has
the same potential for causing a β-cutoff. Therefore, the more children an
expected cut-node has, the more likely it is to be a True cut-code. Although
this assumption is not realistic, it can serve as a baseline for comparison.

2. History heuristic (HH > ∆):
A more sensible approach is to distinguish between good and bad moves. For
example, by using information from the history-heuristic table [13]. Moves
with a positive history-heuristic value are known to be useful elsewhere in the
search-tree. This method defines moves with a history-heuristic value greater
than a constant ∆ as potentially good. One advantage of this scheme is that
no additional search is required.

3. Quiescence search (QS() ≥ β − δ):
Here quiescence search is used to determine which children of a cut-node
have a potential for causing a cutoff. If the quiescence search returns a value
greater or equal to β − δ the child is considered promising. The constant δ,
called the β-cutoff margin, can be either positive or negative. Although, this
scheme may require additional search, it will hopefully give a better estimate
than the aforementioned schemes.

4. Null-window search (NWS(d − r) ≥ β − δ):
This scheme is much like the one above, except instead of using quiescence
search to estimate the merit of the children, a null-window search to a closer
horizon at distance d − r is used.

To establish how well the number of promising moves, as judged by each of the
above schemes, correlates to an expected cut-node being a True cut-node or not,
we had the program gather statistics about cut-nodes. When the program visits
an expected cut-node it calculates the number of promising move alternatives in
the position according to each of the above schemes. Then, after searching the
node to a full depth to determine if it really is a cut-node, information about
the number of promising moves is logged to a file along with a flag indicating
whether the node is a True cut-node.

The resulting data was classified into two groups, one with the True cut-
nodes, and the other with the False cut-nodes. The program gathered statistics
about 100,000 expected cut-nodes, and of these only 2.5% were classified incor-
rectly (i.e. were False cut-nodes). The average number of promising moves, as
judged by each scheme, is presented in Table 1. The second column shows the

average for the True cut-node group and the third column the average for the
False cut-node group. By comparing the averages and the standard deviations
(also shown in the table) of the two groups we can determine the scheme that
can best predict False cut-nodes. That is, we are looking for the scheme that has
the greatest difference between the averages for the two groups, and the lowest
standard deviation.

Table 1. Comparison of different schemes for identifying False cut-nodes

Method True cut-nodes False cut-nodes
x σ x σ

NM 35.60 11.74 24.83 14.46
HH > 0 22.27 8.87 16.35 9.77
HH > 100 9.15 5.72 7.13 5.33
QS() > β 20.48 15.03 0.32 1.44
QS() > β-25 23.70 14.08 1.66 4.20
NWS(d-2) > β 20.62 14.88 0.17 0.55
NWS(d-2) > β-25 23.75 14.00 1.46 3.75

In Table 1, it is interesting to note that even a simplistic scheme like looking
at the number of legal moves shows a difference in the averages. However, the
difference is relatively small and the standard deviation is high. The history
heuristic schemes have lower standard deviation, but unfortunately the averages
are too similar. This renders them useless. The methods that rely on search, QS()
and NWS(), do much better, especially those where δ (the β-cutoff margin) is set
to zero6. Not only are the averages for the two groups far apart, but the standard
deviation is also very low. From the data in Table 1 the two schemes look almost
equally effective. Therefore, to discriminate between them further, we filtered the
data for the False cut-nodes looking only at non-zero data-points (that is, we
only consider data-points where at least one promising move alternative is found
by either scheme). The result using the filtered data is given in Table 2. Now we
can see more clearly that the null-window (NWS) scheme is a better predictor
of False cut-nodes. Not only does it show on average fewer false promises, but
the standard deviation is also much lower. This means that it only infrequently
shows False cut-nodes as having more than several promising move alternatives.
Even in the worst case there never were more than 6 moves listed as promising,
whereas for the QS() scheme at least one position had 32 wrong indicators.

The above experiments clearly support the hypothesis that there is a way to
discriminate between nodes that are likely to become true cut-nodes and those
that are not. As a result, we selected the shallow null-window searches as the
scheme for finding promising moves in multi-cut αβ-pruning.

6 In The Turk, a δ value of 25 is equivalent to a quarter of a pawn.

Table 2. Comparison of selected schemes using filtered data

Method False cut-nodes
x σ

QS() > β 2.31 3.20
NWS(d− 2) > β 1.45 0.86

7.2 Multi-Cut Parameters

Next, after implementing the multi-cut algorithm in our chess program, we ex-
perimented with different instantiations of the multi-cut parameters both to give
a better insight into how they alter the search behavior, and to find the most
appropriate parameter setting for the program. The program was tested against
a suite of over one thousand tactical chess problems [12]. For each run a different
set of multi-cut parameters was used, and information was collected about both
the total number of nodes explored, and the number of problems solved. The
program was instructed to search to a nominal depth of 7-ply, and use normal
search extensions and null-move search reductions. Basically, we are looking for
the parameters that give the most node reduction, while still solving the same
number of problems that the original program does.

Figure 4 shows the search effort under a range of parameter settings. The
search effort is given as a percent of nodes searched by the standard version of
the program. The depth reduction is fixed to 2, but the c and m parameters are

2
3

4
5

6

24681012

60

80

100

120

c

m

%

Fig. 4. Search efficiency when r = 2

allowed to vary from 2 − 6 and 2 − 12, respectively. We also experimented with
different depth reduction factors, but we found that a value of r = 1 offers limited
node savings, while values of r > 2 were too error prone. The data from all the
experiments is included in tabular form as an appendix. As expected, the fewest
nodes are examined for small values of c. For example, the program with c = 2
and m = 12 searches over 40% fewer nodes than the original program. However,
the node savings decrease rapidly as c increases, breaking approximately even
at c = 4, and searching considerately more nodes for higher values. We also
see how m influences the search, although these changes are more subtle. An
interesting observation is that for low values of c the total number of nodes
decreases as m increases, but the opposite is true for higher values of c. This can
be explained by the counter-acting effects we discussed earlier. For low values
of c, we observe more mc-prunings as m increases, and the extra cutoffs more
than offset the additional search overhead of each mc-prune search. However,
for larger values of c there are far fewer additional cutoffs, and the increased
cost of each mc-prune search starts to show. From looking only at this graph,
using a low value of c and a relatively high value for m, results in the best search
efficiency. However, we still have to look at the other side of the coin, namely
the error rates associated with the different parameter settings.

Figure 5 shows a similar graph, except here we are looking at the percentage
of problems solved (as compared to the standard version of the program). Most
notable is the steep increase in the percentage of problems solved as c is increased
from 2 to 3. However, increasing c further only yields slow improvement. There
is also a slight trend towards an improved accuracy as m is decreased, at least
for the smaller values of c. This is understandable, by decreasing m the criterion
for mc-prune is being set more conservatively.

From the above data, setting c = 3 and m somewhere in the high range of
8 − 12 looks the most promising. These settings give a substantial node savings
(about 20%), while still solving over 99% of the problems that the standard
version does.

7.3 Multi-Cut in Practice

Ultimately, we want to show that a game-playing program using the new pruning
method can achieve increased playing strength. Although, the aforementioned
experiments are useful in giving insight into the feasibility of the idea and the
behavior of the search, they do not tell how beneficial the new method is in
practice. For that actual chess matches are needed. Generally, when using a
forward-pruning scheme playing games is the only way to show the proper bal-
ance between improved search efficiency and added risk of overlooking good
continuations.

Two versions of the program were matched against each other, one with
multi-cut pruning and the other without. Four matches, with 80 games each,
were played using different time controls. To prevent the programs from playing
the same game over and over, forty well-known opening positions were used as
a starting point. The programs played each opening once from the white side

2
3

4
5

6

24681012

96

98

100

c

m

%

Fig. 5. Decision quality when r = 2

and once as black. Table 3 shows the match results. T represents the unmodified
version of the program and Tmc(c,m,r) the version with multi-cut implemented.
We experimented with the case m = 10, r = 2, and c = 3 (i.e. 10 moves searched
with a depth reduction of 2 ply and with 3 cutoffs required to achieve the mc-
prune condition).

Table 3. Summary of 80-game match results

Tmc(3,10,2) versus T

Time control Score Winning %

40 moves in 5 minutes 46 - 34 57.5
40 moves in 15 minutes 42 - 38 52.5
40 moves in 25 minutes 43.5 - 36.5 54.4
40 moves in 60 minutes 43 - 37 53.8

The multi-cut version shows definite improvement over the unmodified ver-
sion. In tournament play this winning percentage would result in about 35 points
difference in the players’ performance rating. Although the results are encour-
aging, it is still too early to state the exact strength difference between the two
versions, based only on this single set of experiments: for that more games are
needed.

One final insight: the programs gathered statistics about the behavior of the
multi-cut pruning. The search spends about 25%-30% of its time (in terms of

nodes visited) in shallow multi-cut searches, and an mc-prune occurs in about
45%-50% of its attempts. Obviously, the tree expanded using multi-cut pruning
differs significantly from the tree visited when it is not used.

8 Related Work

The idea of exploring additional moves at cut-nodes is not entirely new. There
exist at least two other variants of the αβ-algorithm that explore more than
one alternative at cut-nodes, although the resulting information is used quite
differently in our work.

The Singular Extensions algorithm [2] extends “singular” moves more deeply
than others. A move is defined as singular if its evaluation is higher than all its
siblings by some specified margin, called the singular margin. Moves that fail-
high, i.e. cause a cutoff, automatically become candidates for being singular (the
algorithm also checks for singular moves at pv-nodes). To determine if a can-
didate move that fails-high really is singular, all its siblings are explored to a
reduced depth. The move is declared singular only if the value of all the alterna-
tives is significantly lower (as defined by the singular margin) than the value of
the principal variation. Singular moves are “remembered” and extended one ad-
ditional ply on subsequent iterations. This method improved the playing strength
of Deep Thought (predecessor of Deep Blue) by about 30 USCF rating points [1].
One might think of multi-cut as the complement of singular-extensions: instead
of extending lines where there is seemingly only one good move, it prunes lines
where many promising (refutation) moves are available.

The Alpha-Beta-Conspiracy algorithm [9] is essentially an αβ-search that
uses conspiracy depth, instead of classical ply depth, to decide when to stop
searching a branch. The conspiracy depth is updated at each node in the tree,
but instead of reducing the depth always by one ply, it can be reduced by a frac-
tion of a ply, all depending on how many good alternative moves there are. The
fewer alternatives, the smaller will be the conspiracy depth reduction. Quies-
cence searches are used to establish the number of good alternative moves. This
algorithm encourages forced lines to be searched more deeply. Another distinct
feature of the algorithm is that two separate conspiracy depth parameters are
used, one for each player. At each level, only the conspiracy depth parameter
for the player to move is updated. The search explores a branch until either
both conspiracy depths parameters converge to zero, or alternatively, when the
conspiracy depth for the player to move is zero and a static evaluation delivers
a cutoff. However, empirical results using this algorithm were not favorable.

9 Conclusions

We have shown that there exists a strong correlation between the number of
promising move alternatives available at an expected cut-node, and the node
becoming a True cut-node. We investigated how this can affect error propaga-
tion when using a minimax-based search algorithm, and we introduced a new

forward-pruning method, multi-cut, that exploits this correlation. Furthermore,
to show the feasibility of the idea, we implemented and experimented with the
technique in an actual game-playing program. Our experimental results give
rise to optimism. In match play, a version of our chess program using the new
method, consistently outplayed an unmodified version of the program. This in-
dicates that our search method, while expanding a tree that is radically different
from the αβ-algorithm, has seemingly improved playing strength.

The multi-cut method is still in its infancy. There is still scope for improve-
ment through further tuning and enhancement. For example, we have param-
eterized our method using variables instead of constants for c, m, and r, and
propose that their values be adjusted dynamically as the game/search progresses.
The multi-cut method as described and implemented here is not the only way of
using the information about the number of promising move alternatives at cut-
nodes, and by no means necessarily the best. Our experiments show that there is
room for innovative domain-independent pruning methods, based on exploiting
the structure of the minimal tree.

References

1. T. Anantharaman. A Statistical Study of Selective Min-Max Search in Computer
Chess. PhD thesis, Carnegie-Mellon University, Pittsburgh, PA, May 1990.

2. T. Anantharaman, M. S. Campbell, and F. Hsu. Singular extensions: Adding
selectivity to brute-force searching. Artificial Intelligence, 43(1):99–109, 1990.

3. D. G.Beal. Experiments with the Null Move, pages 65–89. Elsevier Science Pub-
lishers B.V., 1989. D.F. Beal (Editor).

4. A. Junghanns. Are there practical alternatives to alpha-beta? ICCA Journal,
21(1):14–32, 1998.

5. D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Artificial
Intelligence, 6(4):293–326, 1975.

6. T. A. Marsland. Relative efficiency of alpha-beta implementations. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI-83), pages
763–766, Karlsruhe, Germany, August 1983.

7. T. A. Marsland. Single-Agent and Game-Tree Search. In A. Kent and J. G.
Williams, editors, Encyclopedia of Computer Science and Technology, volume 27,
pages 317–336, New York, 1993. Marcel Dekker, Inc.

8. T. A. Marsland and F. Popowich. Parallel game-tree search. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-7(4):442–452, July 1985.

9. D. A. McAllester and D. Yuret. Alpha-beta-conspiracy search, 1993. URL:
http://www.research.att.com/˜dmac/abc.ps.

10. D. S. Nau. Pathology on game trees: A summary of results. In Proceedings of the
ACM National Conference on Artificial Intelligence, pages 102–104, 1980.

11. A. Reinefeld. An improvement to the Scout tree search algorithm. ICCA Journal,
6(4):4–14, 1983.

12. F. Reinfeld. 1001 Brilliant Ways to Checkmate. Sterling Publishing Co., New
York, N. J., 1955. Reprinted by Melvin Powers Wilshire Book Company.

13. J. Schaeffer. The history heuristic and alpha-beta search enhancements in prac-
tice. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1):1203–
1212, 1989.

14. D. J. Slate and L. R. Atkin. Chess Skill in Man and Machine, chapter 4. CHESS
4.5 – Northwestern University Chess Program, pages 82–118. Springer-Verlag, New
York, NY, 1977.

A Appendix

The result of the experiment described in Section 7.2 is shown in Table 4 below.
Both the number of nodes searched and problems solved are relative to the
performance of the standard (unmodified) version of the program.

Table 4. Tmc(c,m,r) searches

r c m Nodes Solved r c m Nodes Solved r c m Nodes Solved

1 2 2 92.05 98.10 2 2 2 77.28 98.10 3 2 2 79.21 96.80
1 2 4 93.33 97.60 2 2 4 70.48 97.40 3 2 4 71.60 95.80
1 2 6 93.02 97.20 2 2 6 67.61 97.20 3 2 6 67.71 95.80
1 2 8 91.71 97.20 2 2 8 61.56 97.20 3 2 8 63.17 95.50
1 2 10 92.10 96.80 2 2 10 60.04 97.00 3 2 10 60.57 95.20
1 2 12 93.39 96.80 2 2 12 59.38 96.80 3 2 12 57.13 95.10

1 3 4 134.17 99.20 2 3 4 87.46 99.50 3 3 4 86.07 97.70
1 3 6 144.14 99.20 2 3 6 84.41 99.30 3 3 6 82.92 97.50
1 3 8 150.31 98.90 2 3 8 82.60 99.20 3 3 8 79.30 97.50
1 3 10 153.00 98.70 2 3 10 81.66 99.10 3 3 10 75.86 97.10
1 3 12 157.34 98.50 2 3 12 79.95 99.20 3 3 12 72.21 97.00

1 4 4 175.38 99.40 2 4 4 100.14 99.70 3 4 4 98.33 98.60
1 4 6 194.19 99.40 2 4 6 98.86 99.60 3 4 6 94.20 97.90
1 4 8 210.41 99.30 2 4 8 98.50 99.40 3 4 8 89.96 97.90
1 4 10 222.67 99.10 2 4 10 98.51 99.20 3 4 10 87.39 97.70
1 4 12 234.33 99.00 2 4 12 98.04 99.20 3 4 12 84.89 97.60

1 5 6 227.73 99.50 2 5 6 109.63 99.80 3 5 6 97.23 98.50
1 5 8 252.26 99.60 2 5 8 109.93 99.80 3 5 8 94.95 98.10
1 5 10 276.16 99.50 2 5 10 110.67 99.70 3 5 10 92.02 97.90
1 5 12 286.82 99.40 2 5 12 110.88 99.60 3 5 12 90.24 97.80

1 6 6 239.81 99.70 2 6 6 113.77 99.90 3 6 6 100.97 99.20
1 6 8 269.33 99.70 2 6 8 116.40 99.90 3 6 8 99.42 98.30
1 6 10 312.24 99.70 2 6 10 118.61 99.90 3 6 10 100.24 98.30
1 6 12 335.51 99.70 2 6 12 120.23 99.90 3 6 12 95.66 98.00

