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Stability of networks of ISS subsystems
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What are conditions for input-to-state stability of such a network?
How can we construct Lyapunov functions ?
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Input-to-state stability (ISS) — Lyapunov version

- ẋ = f (x , u)u
x

- Σ : ẋ = f (x , u)

Definition
A locally Lipschitz continuous function V : RN → R+ is an ISS
Lyapunov function for Σ if there exist ψ1, ψ2, γ ∈ K∞ and a
positive definite function α such that

ψ1(‖x‖) ≤ V (x) ≤ ψ2(‖x‖)

and for a.a. x ∈ RN

V (x) ≥ γ(‖u‖) =⇒ ∇V (x) · f (x , u) ≤ −α(V (x)).
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Input-to-state stability (ISS) — Lyapunov version

{x : V (x) ≤ c}

0 {x : V (x) ≤ γ(‖u‖)}

V > γ(‖u‖) =⇒ V̇ < 0
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Interconnections: First steps
Consider a simple feedback loop

Σ1 : ẋ1 = f1(x1, x2, u)

Σ2 : ẋ2 = f2(x1, x2, u)

fi : RN1+N2+Nu → RNi
Σ2

Σ1

�

-

-

� u

u

x2 x1

with

V1(x1) > max {γ12(V2(x2)), γu(‖u‖)} ⇒ V̇1 < −α1(‖x1‖)

V2(x2) > max {γ21(V1(x1)), γu(‖u‖)} ⇒ V̇2 < −α2(‖x2‖)
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Two systems in feedback interconnection

Theorem [Jiang, Mareels, Wang 1996]
If there exist K∞-functions α1, α2 such that

γ12 ◦ γ21 ≤ id,

then
ẋ = f (x , u)

with

x =

(
x1

x2

)
and f (x , u) =

(
f1(x1, x2, u)
f2(x1, x2, u)

)
is input-to-state stable from u to (x1, x2).
See also [Jiang, Teel, Praly (1994)] [Grüne 2002].
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Two systems in feedback interconnection
The small gain condition is

γ12 ◦ γ21 ≤ id,

Introduce the matrix

Γ :=

(
0 γ12

γ21 0

)
.

Γ may be interpreted as an operator

Γ : R2
+ → R2

+

(
s1

s2

)
7→
(
γ12(s2)
γ21(s1)

)
.

With this interpretation, the small gain condition is equivalent to

Γ(s) 6≥ s for all s ∈ R2
+, s 6= 0 .
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The small gain condition
The condition for the existence of Lyapunov functions will turn out
to be

Γ(s) 6≥ s , ∀s ∈ R2
+ \ {0}
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In two dimensions

Γ(s) 6≥ s means Γ(s) =

[
γ12(s2)
γ21(s1)

]
6≥
[
s1

s2

]
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By the small gain conditions for some s ∈ R2+

Γ(s) =

[
γ12(s2)
γ21(s1)

]
�
[
s1

s2

]

γ21

γ−1
12
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By the small gain conditions for some s ∈ R2
+

Γ(s) =

[
γ12(s2)
γ21(s1)

]
�
[
s1

s2

]

γ21

γ−1
12

Construction of the Lyapunov function: Find a strictly increasing,
unbounded path σ in the orange region. Set

V (x) = max{σ−1
1 (V1(x1)), σ−1

2 (V2(x2))
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Large-scale interconnections

Large-scale interconnections

Σi : ẋi = fi (x1, . . . , xn, u),

with fi : R
∑

Nj+M → RNi ,
such that each system
satisfies

Σ1

Σ2

Σ3

Σ4

Σ5

Σ6

Σ7

Vi (xi ) ≥ µ{ γij(Vj(xj)), γi (‖u‖) } =⇒ ∇Vi (xi )·fi (x , u) ≤ −αi (Vi (xi ))

where γij , γij ∈ K∞ or constantly zero.
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Large-scale interconnections

Monotone Aggregation Functions

A continuous function µ : Rn
+ → R+ is called a monotone

aggregation function if the following two properties hold

(M1) positive definiteness: µ(0) = 0, µ(s) > 0 for all s ∈ Rn
+, s 6= 0;

(M2) monotonicity: if x < y , then µ(x) < µ(y).
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Large-scale interconnections

The induced monotone operator

The interconnection structure given by the gain functions γij
defines a matrix

Γ = (γij) ∈ (K∞ ∪ {0})n×n.

Such a matrix together with monotone aggregation functions
µ1, . . . , µn define a monotone operator Γµ : Rn

+ → Rn
+ by

Γµ(s) =
(
µ1(γ1j(sj)) . . . µn(γnj(sj))

)T
, s ∈ Rn

+ .

Here and in the following we assume γii ≡ 0 for all i .
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The small-gain condition

The small gain condition
The condition for the existence of Lyapunov functions is the
existence of a D = diag(id +αi ), αi ∈ K∞ such that

D ◦ Γµ(s) 6≥ s , ∀s ∈ Rn
+ \ {0}
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The small-gain condition

The small gain condition

In the rest of the talk D will be ignored.
The condition for the existence of Lyapunov functions is

Γµ(s) 6≥ s , ∀s ∈ Rn
+ \ {0}
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The small-gain condition

The small gain condition
The condition for the existence of Lyapunov functions is

Γµ(s) 6≥ s , ∀s ∈ Rn
+ \ {0}

Why is this condition interesting ?
We want again a path in the set {Γµ(s)� s}.
Consider the sets

Ωi := {s ∈ Rn
+ | Γ(s)i < si} i = 1, . . . , n

If Γµ(s) 6≥ s then {0} ∪
⋃

i Ωi = Rn
+ and

Ω :=
⋂
i

Ωi 6= ∅
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The small-gain condition

Theorem
(Knaster-Kuratowski-Mazurkiewicz 1929)
Let S be an n − 1-dimensional simplex with extremal points
e1, . . . , en. Let A1, . . . ,An be open sets in S such that for all
subsets ∅ 6= J ⊂ {1, . . . , n} we have

conv{ej | j ∈ J} ⊂
⋃
j∈J

Aj ,

then
n⋂

i=1

Ai 6= ∅ .
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Ω

Properties of Ω

s
Γµ(s)

Γ2
µ(s)Γ3

µ(s)

Rn
+

Ω

Ω = {s ∈ Rn
+ :
(
Γµ(s)

)
i
< si ∀i}

I Knaster-Kuratowski-
Masurkiewicz-Theorem
ensures that decay set
intersected with Sr is
nonempty for any r > 0.

I Γµ is strictly decreasing on
Ω.

I The decay set contains a
backward invariant set that
is unbounded in every
component and pathwise
connected to the origin.
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ISS-Lyapunov function construction

The final construction

Theorem (Dashkovskiy, Rüffer, W. 2010)
If the small-gain condition

D ◦ Γ(s) 6≥ s ∀s ∈ Rn
+ \ {0}

is satisfied, then an unbounded sufficiently regular path σ exists in
Ω and an ISS Lyapunov function for Σ is given by

V (x) = max
i=1,...,n

σ−1
i (Vi (xi )) . (1)
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ISS-Lyapunov function construction

Properties of Ω

s
Γ(s)

Γ2(s)Γ3(s)

Rn
+

Ω

Ω = {s ∈ Rn
+ :
(
Γ(s)

)
i
< si ∀i}

I Given a point s ∈ Ω, the
Ω-path can be constructed
locally by iteration and
linear interpolation.

I The only problem is to find
s ∈ Ω, i.e. a point such that

Γµ(s)� s
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Where are the algorithms?

For a numerical procedure we are left with the problem of finding a
decrease point s for a monotone operator Γ : Rn

+ → Rn
+, i.e. a

point satisfying
Γ(s)� s

given that a small-gain condition holds.
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Step 1: Change the problem to a fixed-point problem
Consider

φ(v) = Γµ(v)

(
1 + min

{
0,
κΓ − 2‖v‖
‖v‖+ κ0

})
+ max {0, κh − 2‖v‖} e.

Here κ0 > 0, κΓ > κh > 0 and e :=
∑N

I=1 ei .

max{0,κh−2r}

1+min{0,κΓ−2r

r+κ0
}

−1

0

1

κh

•κh
2

•κΓ
2

•κΓ+κ0
r
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Step 1: Change the problem to a fixed-point problem

Consider

φ(v) = Γµ(v)

(
1 + min

{
0,
κΓ − 2‖v‖
‖v‖+ κ0

})
+ max {0, κh − 2‖v‖} e.

Lemma
If φ has a fixed point s∗, then this is a decay point of Γµ.
We can regulate the location of the fixed point by choice of the
constants.



Contents ISS and Lyapunov functions Input-to-state stability and interconnections Lyapunov functions Simplicial fixed point algorithms

Step 2: Use homotopy to find a fixed point

Definition
Let f , g : C → D be continuous. We call f , g homotopic, if there
exists a continuous mapping

ϑ : C × [0, 1]→ D

with
ϑ(s, 0) = f (s) and ϑ(s, 1) = g(s) ∀ s ∈ C
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Step 2: Use homotopy to find a fixed point

• Fix a triangulation of Rn
+ × [0, 1] with corner points only

Rn
+ × {0, 1}. Choose some c ∈ Rn

+ such that (c , 0) lies in the
interior of a facet in Rn × {0}.
• Consider the homotopy

ϑ(v , t) = (1− t)c + tφ(v)

• For t = 0 the unique fixed point is obviously c.
• Given a sequence tk → 1 there are fixed points stk of ϑ(·, tk)
• The cluster points of the set of fixed points stk of are just the
fixed points of ϑ(·, 1) = φ.
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The Algorithm

The Simplicial Fixed Point Algorithm

Step (0) τ0: unique N-simplex containing (c , 0).
η0: the unique (N + 1)-simplex which has τ0 as its facet.
y+ the vertex of η0 that is not a vertex of τ0.

Step (1) k → k + 1 Compute unique “complete” facet
τk+1 of ηk not equal to τk .
This is possible, unless τk ⊂ RN × {1}.

Step (2) Find unique simplex ηk+1 sharing the facet
τk+1 with ηk and let y+ be the vertex ηk+1 not be-
ing a vertex of τk+1. Set k = k+1 and return to Step (1).
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Convergence

Convergence

Theorem (Geiselhart, W. 2012)
Let Γ be irreducible and Γµ satisfy the small gain condition.
Then there exists an explicit formula for the mesh size below which
the simplicial algorithm converges in finitely many steps to a decay
point of Γµ.



Contents ISS and Lyapunov functions Input-to-state stability and interconnections Lyapunov functions Simplicial fixed point algorithms

Example: Quasi-monotone systems

Test example

Rüffer, Dower, Ito, 2010:
System construction: P ∈ Rn×n

+ , ρ(P) < 1, A := −I + P.

S(v)i =


evi−1 if vi > 1
vi if vi ∈ [−1, 1]
−e−vi−1 if vi < −1

.

Compute decay points for

v̇ = S ′(S−1(v))AS−1(v) =: g(v)
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Example: Quasi-monotone systems

N run time # iterations simulations

5 0.0277s 20.9 100
10 0.0415s 34.5 100
15 0.0618s 72.3 100
25 0.1710s 187.8 100

50 1.180s 688.4 100
100 13.22s 2711.9 50
150 78.35s 6614.3 10
200 273.6s 11243.8 10
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Example: Quasi-monotone systems

Conclusions

I We have seen a general procedure for the construction of
an (ISS) Lyapunov function

I for large-scale networks of interconnected systems.

I Our result extends the existing result of Jiang, Mareels, Wang
(1996) to arbitrarily many systems.

I Local construction of Lyapunov functions can be performed
numerically. An algorithm extending an approach by Merrill
can be used to determine a point in Ω. The rest of σ is the
obtained by iterating Γ
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