Geometric construction of polytopic invariant sets for constrained linear systems

Nikolaos Athanasopoulos

joint work with Mircea Lazar, George Bitsoris

Workshop on Algorithms for Dynamical Systems and Lyapunov Functions
17th-19th July 2013, Reykjavik University, Iceland
Outline

• Setting
• Problem
• Existing approaches
• Proposed solution
• Examples
Systems

autonomous systems

\[
\begin{align*}
\dot{x}(t) &= Ax(t) & t \in \mathbb{R}_+ \\
x(t + 1) &= Ax(t) & t \in \mathbb{N} \\
x(t) &\in \mathbb{R}^n
\end{align*}
\]

systems with inputs

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) & x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m \\
x(t + 1) &= Ax(t) + Bu(t) & x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m
\end{align*}
\]

systems with uncertainties

\[
\begin{align*}
\dot{x}(t) &\in \Phi(x(t), u(t)) & \Phi : \mathbb{R}^n \times \mathbb{R}^m \Rightarrow \mathbb{R}^n \\
x(t + 1) &\in \Phi(x(t), u(t))
\end{align*}
\]

\[
\Phi(x, u) = \{ Ax + Bu : A \in \mathcal{A}, B \in \mathcal{B} \}
\]

\[
\mathcal{A} = \text{conv}(\{ A_i \}_{i \in \mathbb{N}_{[1, q_A]}}) \quad \mathcal{B} = \text{conv}(\{ B_i \}_{i \in \mathbb{N}_{[1, q_B]}})
\]
Constraints

state constraints

\[x(t) \in X \subset \mathbb{R}^n \quad t \in \mathbb{R}_+ \]
\[t \in \mathbb{N} \]

input constraints

\[u(t) \in U \subset \mathbb{R}^m \quad t \in \mathbb{R}_+ \]
\[t \in \mathbb{N} \]
Invariance

admissible positively invariant sets

\[\dot{x}(t) = \Phi(x(t)) \quad x(t) \in \mathbb{X} \subset \mathbb{R}^n \]
\[x(t + 1) = \Phi(x(t)) \]

\[x(0) \in \mathcal{S} \subseteq \mathbb{X} \quad \Rightarrow \quad x(t) \in \mathcal{S}, \quad t \in \mathbb{R}_+ \]
\[\quad t \in \mathbb{N} \]

admissible \(\lambda \)-contractive sets

\[x(0) \in \mathcal{S} \subseteq \mathbb{X} \quad \Rightarrow \quad \exists \quad \lambda \geq 0 \text{ such that } x(t) \in e^{-\lambda t} \mathcal{S}, \quad t \in \mathbb{R}_+ \]
\[\exists \quad 0 \leq \lambda \leq 1 \text{ such that } x(t) \in \lambda^t \mathcal{S}, \quad t \in \mathbb{N} \]
Invariance

\[\dot{x}(t) = \Phi(x(t), u(t)) \quad x(t) \in \mathbb{X} \subset \mathbb{R}^n \]
\[x(t + 1) = \Phi(x(t), u(t)) \quad u(t) \in \mathbb{U} \subset \mathbb{R}^m \]

\[x(0) \in \mathcal{S} \subseteq \mathbb{X} \quad \Rightarrow \quad \exists \quad f : \mathbb{X} \to \mathbb{U} \text{ such that} \]
\[\mathcal{S} \text{ is positively invariant w.r.t.} \quad \dot{x}(t) = \Phi(x(t), f(x(t))) \]
\[x(t + 1) = \Phi(x(t), f(x(t))) \]

\[x(0) \in \mathcal{S} \subseteq \mathbb{X} \quad \Rightarrow \quad \exists \quad f : \mathbb{X} \to \mathbb{U} \text{ such that} \]
\[\exists \quad \lambda \geq 0 \text{ such that} \quad \mathcal{S} \text{ is } \lambda\text{-contractive w.r.t.} \quad \dot{x}(t) = \Phi(x(t), f(x(t))) \]
\[\exists \quad 0 \leq \lambda \leq 1 \text{ such that} \quad \mathcal{S} \text{ is } \lambda\text{-contractive w.r.t.} \quad x(t + 1) = \Phi(x(t), f(x(t))) \]
Problem

a. Compute the maximal λ-contractive set / the maximal controlled λ-contractive set

b. Compute a λ-contractive / controlled λ-contractive set of a non-trivial size and of a specified complexity
Polyhedral sets

Polytopic sets \(S = \{x \in \mathbb{R}^n : Px \leq 1_p\} \)

Half-space description

1. \(P \in \mathbb{R}^{p \times n} \) has at least \(n + 1 \) rows

2. \(S \) is in general non-symmetric

3. \(P \) is of full row-rank and \(S \) includes the origin in its interior
Polyhedral sets

Polytopic sets

\[S = \operatorname{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}}) \]

Vertex description

1. \(V \in \mathbb{R}^{n \times q} \) has at least \(n + 1 \) columns
2. \(S \) is in general non-symmetric
3. \(V \) is of full column-rank and \(S \) includes the origin in its interior
Why search for polytopes?

✓ necessary to exist for stable (stabilizable) linear systems (and uncertain, switched systems)

✓ non-conservative for approximating the region of attraction, region of stabilizability
Existing approaches

- Algebraic necessary and sufficient conditions of existence
- Set iterations
 - Inverse reachability from state constraint set
 - Inverse reachability from singleton equilibrium point \{0\}
- Spectral properties
- Norm properties
- Conic partitions
- Trajectory propagation
Existing approaches

Algebraic nec. and suff. conditions of existence of \(\lambda \)-contractive sets

Existing approaches

\[V(x) = \max_i \{[Px]_i\} \]

\[S = \{ x \in \mathbb{R}^n : Px \leq 1_p \} = \text{conv} (\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}}) \]

Conditions for existence of a \(\lambda \)-contractive set \(S \) w.r.t. a linear system

Half-space description

continuous-time:

\[PA = HP \]

\[H_{ij} \geq 0, \ (i,j) \in \mathbb{N}_{[1,p]} \times \mathbb{N}_{[1,p]}, \ i \neq j \]

\[H1_p \leq -\lambda 1_p \]

discrete-time:

\[PA = HP, \quad H \in \mathbb{R}^{p \times p} \]

\[H \geq 0 \]

\[H1_p \leq \lambda 1_p \]
Existing approaches

\[V(x) = \max_i[[Px]_i] \]

\[S = \{ x \in \mathbb{R}^n : Px \leq 1 \} = \text{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}}) \]

Conditions for existence of a \(\lambda \)-contractive set \(S \) w.r.t. a linear system

Vertex description

- **Continuous-time:**
 \[AV = VH \]
 \[H_{ij} \geq 0, \ (i,j) \in \mathbb{N}_{[1,q]} \times \mathbb{N}_{[1,q]}, \ i \neq j \]
 \[1_q^\top H \leq -\lambda 1_q^\top \]

- **Discrete-time:**
 \[AV = VH, \quad H \in \mathbb{R}^{q \times q} \]
 \[H \geq 0 \]
 \[1_q^\top H \leq \lambda 1_q^\top \]

difficulty to solve
Existing approaches

Set iterations

Existing approaches

\[S_{i+1} = \{ x \in \mathbb{X} : (\exists u \in \mathbb{U} : Ax + Bu \in S_i) \} \]

\[S_0 = \{0\} \quad \text{inner approximation} \quad \text{high complexity (not scalable)} \]
\[S_0 = \mathbb{X} \quad \text{outer approximation} \quad + \text{only last element is contractive} \]
Why search for polytopes?

✓ necessary to exist for stable (stabilizable) linear systems (and uncertain, switched systems)

✓ non-conservative for approximating the region of attraction, region of stabilizability

However,

✗ algebraic necessary and sufficient conditions cannot be used directly to provide polytopic sets of non-trivial size

✗ set iteration methods usually explode

✗ existing methods do not account for other specifications such as complexity or other geometrical aspects of the resulting sets
Proposed approach

Problem: Given a λ-contractive set $S = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$.
Proposed approach

Problem: Given a λ-contractive set $\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$; add a vector v^* to its convex hull
Proposed approach

Problem: Given a λ–contractive set $\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$, add a vector v^* to its convex hull such that the resulting set $\mathcal{S}^* = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}, v^*}$ is also λ–contractive.
Proposed approach

\[x(t + 1) = Ax(t) \]

discrete-time case

Result: Given a \(\lambda \)-contractive set \(\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}} \) and a vector \(v^* \), the set \(\mathcal{S}^* = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}, v^*} \) is \(\lambda \)-contractive if and only if there exist a vector \(p^* \in \mathbb{R}^q \) and a scalar \(p^*_q > 1 \), such that

\[
Av^* = Vp^* + p^*_q v^*,
\]

\[
1 \quad \text{T} \quad p^* + p^*_q \leq \lambda,
\]

\[
p^* \geq 0,
\]

\[
p^*_q \geq 0.
\]
Proposed approach

\[x(t + 1) = Ax(t) \]
\[\mathcal{C}(\mathcal{S}) = \{ x \in \mathbb{R}^n : Ax \in \mathcal{S} \} \]

Result: Given a \(\lambda \)-contractive set \(\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}} \) and a vector \(v^* \), \(v^* \in \mathcal{C}(\mathcal{S}) \), the set \(\mathcal{S}^* = \text{conv}(\{[V]_i\}_{i \in \mathbb{N}_{[1,q]}}, v^*) \) is \(\lambda \)-contractive if and only if there exist a vector \(p^* \in \mathbb{R}^q \) such that

\[Av^* = Vp^*; \]
\[1^T_q p^* + p^*_{q+1} \leq \lambda, \]
\[p^* \geq 0, \]
\[p^*_{q+1} \geq 0. \]
Proposed approach

\[x(t+1) = Ax(t) + Bu(t) \]

discrete-time case + inputs

Result: Given a controlled \(\lambda \)-contractive set \(\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}} \) and a vector \(v^* \), the set \(\mathcal{S}^* = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}, v^* \) is controlled \(\lambda \)-contractive if and only if there exist a vector \(p^* \in \mathbb{R}^q \), a scalar \(p_{q+1}^* \) and a vector \(u^* \in \mathbb{R}^m \), such that

\[
Av^* + Bu^* = Vp^* + p_{q+1}^* v^*,
\]

\[
1^T_q p^* + p_{q+1}^* \leq \lambda,
\]

\[
p^* \geq 0,
\]

\[
p_{q+1}^* \geq 0.
\]
Proposed approach

\[
x(t + 1) \in \Phi(x(t), u(t)) \quad \Phi(x) = \{ Ax : A \in \mathcal{A} \} \quad \mathcal{A} = \text{conv}(\{ A_i \}_{i \in \mathbb{N}_{[1,q_A]}})
\]

Result: Given a λ-contractive set $\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$ and a vector v^*, the set $\mathcal{S}^* = \text{conv}([V]_i)_{i \in \mathbb{N}_{[1,q]}}$ is λ-contractive if and only if there exist vectors \(p_i^*, \; i \in \mathbb{N}_{[1,q_A]} \) and scalars \(p_{i,q+1}^*, \; i \in \mathbb{N}_{[1,q_A]} \), such that

\[
A_i v^* = V p_i^* + p_{i,q+1}^* v^*,
\]

\[
1_{q_i} p_i^* + p_{i,q+1}^* \leq \lambda,
\]

\[
p_i^* \geq 0,
\]

\[
p_{i,q+1}^* \geq 0.
\]

for all $i \in \mathbb{N}_{[1,q_A]}$

+ polytopic uncertainties
Proposed approach

\[\dot{x}(t) = Ax(t) \]

continuous–time case

Result: Given a λ–contractive set $\mathcal{S} = \text{conv}([V]_i)_{i \in \mathbb{N}[1,q]}$ and a vector v^*, the set $\mathcal{S}^* = \text{conv}([V]_i)_{i \in \mathbb{N}[1,q]}, v^*)$ is λ–contractive if and only if there exist a vector $p^* \in \mathbb{R}^q$ and a scalar p^*_{q+1}, such that

\[
Av^* = Vp^* + p^*_{q+1}v^*,
\]

\[
1_q^\top p^* + p^*_{q+1} \leq -\lambda,
\]

\[
p^* \geq 0.
\]
Proposed approach

\[\dot{x}(t) = Ax(t) + Bu(t) \]

Result: Given a controlled \(\lambda \)-contractive set \(S = \text{conv}([V], i \in \mathbb{N}_{[1,q]}) \) and a vector \(v^* \), the set \(S^* = \text{conv}(\{[V], i \in \mathbb{N}_{[1,q]}, v^*\}) \) is controlled \(\lambda \)-contractive if and only if there exist a vector \(p^* \in \mathbb{R}^q \), a scalar \(p_{q+1}^* \) and a vector \(u^* \in \mathbb{R}^m \), such that

\[
Av^* + Bu^* = Vp^* + p_{q+1}^*v^*,
\]

\[
1^\top_q p^* + p_{q+1}^* \leq -\lambda,
\]

\[
p^* \geq 0,
\]
Proposed approach

\[
\dot{x}(t) \in \Phi(x(t), u(t)) \quad \Phi(x) = \{Ax : A \in \mathcal{A}\} \quad \mathcal{A} = \text{conv}(\{A_i\}_{i \in \mathbb{N}_{[1,qA]}})
\]

Result: Given a λ-contractive set $\mathcal{S} = \text{conv}([V]_{i \in \mathbb{N}_{[1,q]}})$ and a vector v^*, the set $\mathcal{S}^* = \text{conv}(\{[V]_{i \in \mathbb{N}_{[1,q]}}, v^*\})$ is λ-contractive if and only if there exist vectors $p_i^*, \ i \in \mathbb{N}_{[1,qA]}$ and scalars $p_{i,q+1}^*, \ i \in \mathbb{N}_{[1,qA]}$, such that

\[
A_i v^* = V p_i^* + p_{i,q+1}^* v^*;
\]

\[
1^T_{q} p_i^* + p_{i,q+1}^* \leq -\lambda,
\]

\[
p_i^* \geq 0,
\]

for all $i \in \mathbb{N}_{[1,qA]}$.

+polytopic uncertainties
Region of attraction/ stabilizability

Linear system, polytopic state and input constraints

\[x(t + 1) = Ax(t) + Bu(t) \]
\[x(t) \in X, \quad u(t) \in U, \quad \forall t \in \mathbb{N} \]

\[X = \{ x \in \mathbb{R}^n : P_x x \leq 1_{p_x} \} \]
\[U = \{ x \in \mathbb{R}^n : P_u u \leq 1_{p_u} \} \]

Compute a sequence \(\{ S_i \}_{i \in \mathbb{N}} \) of controlled \(\lambda \)-contractive polytopes such that

1. \(S_i \subseteq S_{i+1} \)
2. \(S_i \subseteq X \)
3. \(S_i \) is a polytope
4. \(\exists f_i : S_i \rightarrow U \) such that \(S_i \) is \(\lambda \)-contractive w.r.t. \(x(t + 1) = Ax(t) + Bf_i(x(t)) \)
Region of attraction/ stabilizability

Compute a sequence \(\{S_i\}_{i \in \mathbb{N}} \) of controlled \(\lambda \)-contractive polytopes such that

1. \(S_i \subset S_{i+1} \) add vertices \(\{v_i^*\}_{i \in \mathbb{N}[1,p_i]} \) to convex hull of \(S_i \)

2. \(S_i \subset \mathbb{X} \) true if \(v_i^* \in \mathbb{X}, i \in \mathbb{N}[1,p_i] \) (linear ineqs)

3. \(S_i \) is a polytope from proposed approach

4. \(\exists f_i : S_i \rightarrow \mathbb{U} \) such that \(S_i \) is \(\lambda \)-contractive

\[
\begin{align*}
 x(t + 1) = Ax(t) + B f_i(x(t)) & \text{ from proposed approach} \\
 \text{true if } u_i^* \in \mathbb{U}, i \in \mathbb{N}[1,p_i] & \text{ (linear ineqs)}
\end{align*}
\]
Region of attraction/ stabilizability

\[\min_{v^*, u^*, p^*, p_{q+1}} \{0\} \]

\[A v^* + B u^* = V p^* + p_{q+1}^* v^* , \]
\[1^T p^* + p_{q+1}^* \leq \lambda , \]
\[p^* \geq 0 , \]
\[p_{q+1}^* \geq 0 , \]
\[P_x v^* \leq 1_{p_x} , \]
\[P_u u^* \leq 1_{p_u} . \]
Region of attraction/ stabilizability

$$\max_{v^*, u^*, p^*, p_{q+1}^*} \{ [P_i v^*]_j \}$$

$$Av^* + Bu^* = Vp^* + p_{q+1}^* v^*,$$
$$1^\top p^* + p_{q+1}^* \leq \lambda,$$
$$p^* \geq 0,$$
$$p_{q+1}^* \geq 0,$$
$$P_x v^* \leq 1_{p_x},$$
$$P_u u^* \leq 1_{p_u}$$
Region of attraction/ stabilizability

\[\max_{v^*, u^*, p^*, p_{q+1}^*} \{[[P_i v^*]_j]\} \]

\[
Av^* + Bu^* = Vp^* + p_{q+1}^* v^*, \\
1^\top p^* + p_{q+1}^* \leq \lambda, \\
p^* \geq 0, \\
p_{q+1}^* \geq 0, \\
P_x v^* \leq 1_{p_x} \\
P_u u^* \leq 1_{p_u}
\]

There exists a vector \(v \) such that conv\((S_i, v) \) is controlled \(\lambda \)-contractive if and only if there exists a non-trivial solution to the above problems.
Region of attraction/ stabilizability

\[
\max_{v^*,u^*,p^*,p_{q+1}^*} \{[P_i v^*]_1\} = c_1
\]

\[Av^* + Bu^* = V p^* + p_{q+1}^* v^*,\]

\[1_1^\top p^* + p_{q+1}^* \leq \lambda,\]

\[p^* \geq 0,\]

\[p_{q+1}^* \geq 0,\]

\[P_x v^* \leq 1_{px},\]

\[P_u u^* \leq 1_{pu}.\]
Region of attraction/ stabilizability

\[\max_{v^*, u^*, p^*, p_{q+1}^*} \{ [P_i v^*]_2 \} = c_2 \]

\[Av^* + Bu^* = Vp^* + p_{q+1}^* v^*; \]
\[1^T_q p^* + p_{q+1}^* \leq \lambda, \]
\[p^* \geq 0, \]
\[p_{q+1}^* \geq 0, \]
\[P_x v^* \leq 1_{p_x} \]
\[P_u u^* \leq 1_{p_u} \]
Region of attraction/ stabilizability

\[
\max_{v^*, u^*, p^*, p_{q+1}^*} \{ [P_i v^*]_3 \} = c_3
\]

\[
Av^* + Bu^* = Vp^* + p_{q+1}^* v^*,
\]

\[
1_q^\top p^* + p_{q+1}^* \leq \lambda,
\]

\[
p^* \geq 0,
\]

\[
p_{q+1}^* \geq 0,
\]

\[
P_x v^* \leq 1_{p_x}
\]

\[
P_u u^* \leq 1_{p_u}
\]
The convex hull of the vectors $v_i^*, \ i \in \mathbb{N}_{[1,p_i]}$ with S_i is also controlled λ–contractive

The procedure continues until no further expansion can be made or another termination criterion is met

For discrete–time systems, the set sequence converges to the maximal controlled λ–contractive set
Specified complexity

We can compute sets of prespecified complexity if we choose to add vertices in specific regions of the state-space.

S has 8 vertices
Specified complexity

We can compute sets of specified complexity if we choose to add vertices in specific regions of the state-space.

S has 8 vertices

S^* has 9 vertices
Specified complexity

We can compute sets of prespecified complexity if we choose to add vertices in specific regions of the state-space.

\mathcal{S} has 8 vertices

\mathcal{S}^* has 8 vertices
Specified complexity

We can compute sets of prespecified complexity if we choose to add vertices in specific regions of the state-space.

S has 8 vertices

S^* has 5 vertices
Specified complexity

We can compute sets of prespecified complexity if we choose to add vertices in specific regions of the state-space.

Key idea: Search for enlargements by ordering the regions according to the complexity induced.
Examples-domain of attraction (1)

\[x(t + 1) = Ax(t) + Bu(t) \]

\[X = \{ x \in \mathbb{R}^n : -25 \leq x_1 \leq 25, \quad -5 \leq x_2 \leq 5 \} \]

\[U = \{ x \in \mathbb{R}^n : -1 \leq u \leq 1 \} \]

\[A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix}, \]
Examples - domain of attraction (1)

\[x(t + 1) = Ax(t) + Bu(t) \]
\[X = \{ x \in \mathbb{R}^n : -25 \leq x_1 \leq 25, -5 \leq x_2 \leq 5 \} \]
\[U = \{ x \in \mathbb{R}^n : -1 \leq u \leq 1 \} \]

\[A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix}, \]

A. Algebraic nec. and suf. conditions:
1. place eigenvalues in unit rhombus.
2. construct set \(S \) by the left eigenvectors of the closed-loop matrix

existing approaches
Examples-domain of attraction (1)

\[x(t + 1) = Ax(t) + Bu(t) \]

\[X = \{ x \in \mathbb{R}^n : -25 \leq x_1 \leq 25, \quad -5 \leq x_2 \leq 5 \} \]

\[U = \{ x \in \mathbb{R}^n : -1 \leq u \leq 1 \} \]

\[A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix}, \]

existing approaches

B. Inverse reachability map: start from the equilibrium point \(S_0 = \{0\} \)

Convergence in 146 iterations
Examples-domain of attraction (1)

\[x(t + 1) = Ax(t) + Bu(t) \]

\[X = \{ x \in \mathbb{R}^n : -25 \leq x_1 \leq 25, \quad -5 \leq x_2 \leq 5 \} \]

\[U = \{ x \in \mathbb{R}^n : -1 \leq u \leq 1 \} \]

\[
A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix}
\]

existing approaches

C. Inverse reachability map: start from the state constraint set \(S_0 = X \)

Convergence in 56 iterations
Examples - domain of attraction (1)

\[x(t + 1) = Ax(t) + Bu(t) \]

\[X = \{ x \in \mathbb{R}^n : -25 \leq x_1 \leq 25, \ -5 \leq x_2 \leq 5 \} \]

\[U = \{ x \in \mathbb{R}^n : -1 \leq u \leq 1 \} \]

\[A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix} \]

D. Proposed approach
$x(t + 1) = Ax(t) + Bu(t)$

$X = \{x \in \mathbb{R}^n : -25 \leq x_1 \leq 25, \; -5 \leq x_2 \leq 5\}$

$U = \{x \in \mathbb{R}^n : -1 \leq u \leq 1\}$

$A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix},$

D. Proposed approach
Examples-domain of attraction (1)

\[x(t + 1) = Ax(t) + Bu(t) \]
\[X = \{ x \in \mathbb{R}^n : -25 \leq x_1 \leq 25, \ -5 \leq x_2 \leq 5 \} \]
\[U = \{ x \in \mathbb{R}^n : -1 \leq u \leq 1 \} \]

\[A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} \frac{T_s^2}{2} \\ \frac{T_s}{2} \end{bmatrix}, \]

D. Proposed approach
Examples-domain of attraction (1)

\[x(t + 1) = Ax(t) + Bu(t) \]

\[X = \{ x \in \mathbb{R}^n : -25 \leq x_1 \leq 25, \ -5 \leq x_2 \leq 5 \} \]

\[U = \{ x \in \mathbb{R}^n : -1 \leq u \leq 1 \} \]

\[A = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix}, \]

D. Proposed approach

Convergence in 19 iterations
\[\dot{x}(t) \in \Phi(x(t)), \text{ where } \Phi : \mathbb{R}^n \to \mathbb{R}^n, \Phi(x) := \{ Ax : A \in \text{convh}(\{ A_i \}_{i \in \mathbb{N}_{[1,2]}}) \} \]

\[A_1 = \begin{bmatrix} 0.3 & 0.7 \\ -2.3 & -2.3 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -1.8 & 1.0 \\ -0.8 & 0.1 \end{bmatrix}. \]

\[\mathbf{x} = \text{conv}(\{[V_x]_i\}_{i \in \mathbb{N}_{[1,4]}}) \quad V_x = \begin{bmatrix} -1 & -1 & 1 & 1 \\ -1 & 2 & -1 & 1 \end{bmatrix}. \]
Examples-domain of attraction (2)

\[\dot{x}(t) \in \Phi(x(t)), \text{ where } \Phi : \mathbb{R}^n \to \mathbb{R}^n, \Phi(x) := \{ Ax : A \in \text{convh}(\{A_i\})_{i \in \mathbb{N}_{[1,2]}} \} \]

\[A_1 = \begin{bmatrix} 0.3 & 0.7 \\ -2.3 & -2.3 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -1.8 & 1.0 \\ -0.8 & 0.1 \end{bmatrix}. \]

\[X = \text{conv}(\{[V_x]_i\}_{i \in \mathbb{N}_{[1,4]}}) \quad V_x = \begin{bmatrix} -1 & -1 & 1 & 1 \\ -1 & 2 & -1 & 1 \end{bmatrix}. \]

Termination criterion: Hausdorff distance between two consecutive sets \(S_{i-1} \) and \(S_i \) is less than \(d = 10^{-3} \)

\[d_H(S_i, S_{i-1}) \leq 0.001 \]
Examples—specified complexity (1)

double integrator, discretized

Table 1. Complexity and set coverage for the computed sets.

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>10</td>
<td>18</td>
<td>32</td>
<td>106</td>
</tr>
<tr>
<td>Coverage of the set S_{max}(%)</td>
<td>92</td>
<td>98</td>
<td>99.63</td>
<td>100</td>
</tr>
</tbody>
</table>
Examples- specified complexity (2)

triple integrator

Table 2. Complexity and set coverage for the computed sets.

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_{EAS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>10</td>
<td>16</td>
<td>24</td>
<td>44</td>
<td>62</td>
<td>356</td>
</tr>
<tr>
<td>Coverage of the set S_{EAS} (%)</td>
<td>38</td>
<td>45</td>
<td>73.5</td>
<td>90</td>
<td>94</td>
<td>100</td>
</tr>
</tbody>
</table>

S_{EAS}

S_4
Conclusions

1. Construction of invariant/contractive sets, based on geometric properties of polytopes

2. Directly applicable to both discrete-time and continuous-time linear systems

3. Simple implementation

4. Other types of specifications can be addressed (such as complexity constraints)
Relevant works

Acknowledgments

Marie Curie IEF: “Set-Induced Comparison Principles for Complex Systems” (REA No 302345).

George Bitsoris, University of Patras, Greece

Mircea Lazar, Eindhoven University of Technology, the Netherlands

Thank you!