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Introduction

We consider a nonautonomous periodic ODE with
discontinuous right hand side.

For the 1 dimensional case we have a theory for existence,
uniqueness, stability, and the basin of attraction of a periodic
orbit.

We want to know whether and how we can generalize this
theory to 2 and more dimensions.

The idea of this talk is to consider the 1 dimensional case and
then to discuss expected problems associated with adding one
more dimension.

This is work at early stage. Hence we can only provide a
discussion of the problem.
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ODE with Discontinuous Right Hand Side, Filippov (1988)

Nonautonomous periodic ODE

ẋ = f (t, x), (1)

where f (t + T , x) = f (t, x) for all (t, x) ∈ R× R2, with T > 0,
and f is a discontinuous function.

f (t, x) = f ±(t, x) =

{
f +(t, x) if x2 > 0
f −(t, x) if x2 < 0,

Switching surface Σ := {(t, x) ∈ R× R2 : h(t, x) = 0}, where
h(t, x) = x2. We are interested in

existence and uniqueness

stability

basin of attraction of periodic orbit.
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Conditions: 2-Dimensional Case

Conditions which guarantee existence, uniqueness, and continuous
dependence on the initial conditions of solutions of

ẋ = f (t, x).

f ∈ C 1(R× (R2\Σ),R2).

f (t + T , x) = f (t, x) for all (t, x) ∈ R× R2, and T > 0.

f ±(t, x) := f (t, x) for either x2 > 0, or x2 < 0 can be
extended to a continuous function f ±(t, x) up to x2 = 0.

Dx f
+(t, x) with x2 > 0, and Dx f

−(t, x) with x2 < 0 can be
extended to a continuous function Dx f

±(t, x) up to x2 = 0.

At x2 = 0, let f +(t, x1, 0)− f −(t, x1, 0) be a C 1 function w.r.t
time t and x1.

For all t ∈ [0,T ] either ∇h(t, x1, 0) · f +(t, x1, 0) < 0 or
∇h(t, x1, 0) · f −(t, x1, 0) > 0.
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Let the conditions hold. Then, according to Filippov’s
convexification method we can define a set valued function
F : R× R2 → P, where P is the idempotent set, by

F (t, x) := {f (t, x)}, for x 6= Σ,

and by a linear combination of f ±

F (t, x) := {λf −(t, x)+(1−λ)f +(t, x) : λ ∈ [0, 1]}, for x ∈ Σ, (x2 = 0),

Filippov defines a solution of ẋ = f (t, x) to be an absolutely
continuous function

x : [a, b]→ R2

which for almost all t ∈ [a, b] satisfies the differential inclusion

ẋ ∈ F (t, x(t)).

For all x 6∈ Σ, x(t) is a solution of the smooth differential equation
ẋ = f (t, x).
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Filippov’s Theorem:(Existence and uniqueness)

Assume that above conditions hold and that if in addition at least
one of the strict inequalities ∇h(t, x1, 0) · f +(t, x1, 0) < 0 or
∇h(t, x1, 0) · f −(t, x1, 0) > 0 holds. Then for initial data
(t0, x0) ∈ R× R2 a solution of the initial value problem

ẋ(t) ∈ F (t, x(t)), x(t0) = x0

exists for almost all t on an interval t ∈ (t0, b) with b > 0.
Moreover the solution is unique in forward time, t ≥ 0, and
continuously depending on the initial value (t0, x0).
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Stability and the Basin of Attraction

Sufficient Condition (Giesl; Smooth ODE’s, 2004): if all adjacent
solutions within a positively invariant set move towards each other
with respect to a Riemannian metric,

then there exists a unique periodic orbit,

the periodic orbit is exponentially asymptotically stable and its
positively invariant set is a subset of the basin of attraction,
K ⊂ A(Ω).

LM(t,x) := max
v∈R2,vTM(t,x)v=1

vT [M(t, x)Dx f (t, x) +
1

2
M ′(t, x)]v < 0,

where M(t, x) is an Riemannian metric and M ′(t, x) its orbital
derivative, and v the distance between solutions.
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Definition (Riemannian metric)

The matrix valued function M = (M±) ∈ C 1(R× R2,R2×2) is
called a Riemannian metric, if the matrix M(t, x1, x2) is:

symmetric

positive definite for each (t, x1, x2) ∈ K

and periodic such that for all (t, x1, x2) ∈ R× R2

M(t + T , x1, x2) = M(t, x1, x2) holds.

Table: Example of M(t,x)

Case Metric Comment

1-Dimension M(t, x) = eW (t,x(t))I Giesl (2005),
not work in higher Dim
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Metric is used to define the evolution of the distance between
solutions:

AW (t) := eW (t,x) | y(t)− x(t) |
AM(t) := {[y(t)− x(t)]TM(t, x1, x2)[y(t)− x(t)]}1/2

Hence, for the non-smooth case, stability requires to formulate
conditions such that :

LW (t,x(t)) < 0 in the 1-Dim case (provided by Giesl (2005))

LM(t,x(t)) < 0 in the 2-Dim case (to be found).
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Theorem: Giesl (2005)

Let the conditions hold. Also assume that W± : R× R±0 → R are
C 0 functions with W±(t + T , x) = W±(t, x) for all
(t, x) ∈ R× R±0 . Also assume that the orbital derivative (W±)′

exists and being a continuous function in R×R± and continuously
extendable to R× R±0 . Let K ⊂ S1

T × R be a nonempty,
connected, compact, and positively invariant set, such that

1 fx(t, x) + W ′(t, x) ≤ −ν < 0 for all (t, x) ∈ K with x 6= 0

2
f −(t,0)
f +(t,0) e

W−−W+ ≤ e−ε < 1 for all (t, 0) ∈ K with f − < 0

3
f +(t,0)
f −(t,0)e

W+−W− ≤ e−ε < 1 for all (t, 0) ∈ K with f + > 0

hold with ν, ε > 0. Then there exists a unique periodic orbit Ω
with period T in K which is exponentially asymptotically stable
with exponent −ν. Also K ⊂ A(Ω).
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The proof of this theorem relies on the following lemma.

Main lemma

Let the conditions hold and K ⊂ S1
T × R be a nonempty,

connected, compact, and positively invariant set. Also assume that
for each (t0, x0) ∈ K there are constants δ, ν > 0, and C ≥ 1 such
that for all y0 with | y0 − x0 |≤ δ

| (y(t)− x(t)) |≤ Ce−νt | y0 − x0 |

holds for all t ≥ 0 with ν, ε > 0. Then there exists a unique
periodic orbit Ω with period T in K which is exponentially
asymptotically stable with exponent −ν. For its basin of attraction
we have the inclusion K ⊂ A(Ω).
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The proof requires to show that the evolution path AW (t)
(weighted distance between two solutions) decreases over time.
Hence let

AW (t) := eW (t,x) | y(t)− x(t) | .

We need to show that

AW (t) ≤ ce(−ν+ι)(t−t0)A(t0) for all t ≥ 0

for all cases listed below, where X± ⊂ R\{0} is the state space
and Σ the switching line:

1 both solutions have the same sign (x , y ∈ X+;x , y ∈ X−)

2 solutions have opposite sign (x ∈ X+,y ∈ X−;
x ∈ X−,y ∈ X+)

3 (x ∈ Σ, y ∈ X+;x ∈ Σ, y ∈ X−)

4 (x ∈ X+,y ∈ Σ ;x ∈ X−,y ∈ Σ, )

5 sliding (x ∈ Σ,y ∈ Σ).
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Let X± be the state space and Σ the switching manifold of the 1
or 2 Dim case.

Table: Comparison between 1 and 2 Dimensional Cases

1-Dim Case 2-Dim

LW+(t,x) < 0 x , y ∈ X+ LM+(t,x) < 0
LW−(t,x) < 0 x , y ∈ X− LM−(t,x) < 0

trivial x , y ∈ Σ LMs(t,x1,0) < 0, Ms ?
f −

f + e
W−−W+

< 1 x ∈ X+, y ∈ X− jump
f +

f − e
W+−W−

< 1 x ∈ X−, y ∈ X+ jump

LW+(t,x) < 0 x ∈ Σ,y ∈ X+ LM+ < 0, LMs < 0 ?

LW−(t,x) < 0 x ∈ X−,y ∈ Σ LM− < 0, LMs < 0 ?
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1 At variance to the 1-Dimensional case where the evolution
path is defined by a weighted function
A(t) := eW (t,x) | y(t)− x(t) | we need to consider an
evolution path where the weighted function is replaced by a
Riemannian metric.

2 At variance to the 1-Dimensional model where contraction of
solutions on the sliding manifold are trivial (solutions
coincide), we need to show that in the 2-Dimensional case
sliding solutions contract. For that, we need to formulate a
sliding equation f s and define Ms .
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