
Shrinking Maxima, Decreasing Costs:

New Online Packing and Covering Problems∗

Pierre Fraigniaud†

pierre.fraigniaud@liafa.univ-paris-diderot.fr

Magnús M. Halldórsson‡

mmh@ru.is

Boaz Patt-Shamir§¶

boaz@eng.tau.ac.il

Dror Rawitz‖¶

dror.rawitz@biu.ac.il

Adi Rosén†

adiro@liafa.univ-paris-diderot.fr

March 18, 2015

Abstract

We consider two new variants of online integer programs that are duals. In the packing
problem we are given a set of items and a collection of knapsack constraints over these items
that are revealed over time in an online fashion. Upon arrival of a constraint we may need to
remove several items (irrevocably) so as to maintain feasibility of the solution. Hence, the set of
packed items becomes smaller over time. The goal is to maximize the number, or value, of packed
items. The problem originates from a buffer-overflow model in communication networks, where
items represent information units broken into multiple packets. The other problem considered
is online covering: There is a universe to be covered. Sets arrive online, and we must decide for
each set whether we add it to the cover or give it up. The cost of a solution is the total cost
of sets taken, plus a penalty for each uncovered element. The number of sets in the solution
grows over time, but its cost goes down. This problem is motivated by team formation, where
the universe consists of skills, and sets represent candidates we may hire.

The packing problem was introduced in [8] for the special case where the matrix is binary;
in this paper we extend the solution to general matrices with non-negative integer entries. The
covering problem is introduced in this paper; we present matching upper and lower bounds on
its competitive ratio.

Keywords: competitive analysis, randomized algorithm, packing integer programs, online set
packing, team formation, prize-collecting multi-covering.

∗A preliminary version was presented at the 16th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX), 2013.
†LIAFA, CNRS and University Paris Diderot, France.
‡ICE-TCS, School of Computer Science, Reykjavik University, 101 Reykjavik, Iceland.
§School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
¶Supported in part by the Israeli Ministry of Science, Technology, and Space.
‖Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel.

1 Introduction

In this paper we study two related online problems based on the classic packing and covering integer
programs. The first is a general packing problem called Online Packing Integer Programs
(abbreviated opip). In this problem we are given a set of n items and a collection of knapsack
constraints over these items. Initially the constraints are unknown and all items are considered
packed. In each time step, a new constraint arrives, and the online algorithm needs to remove some
items (irrevocably) so as to maintain feasibility of its solution. The goal is to maximize the number,
or value, of packed items. Formally, the offline version of the problem we consider is expressed by
the following linear integer program (N denotes the set of non-negative integers):

max
n∑
j=1

bjxj

s.t.
n∑
j=1

aijxj ≤ ci ∀i

xj ≤ pj ∀j
xj ∈ N ∀j

(PIP)

We assume that A ∈ Nm×n and c ∈ Nn. The value of xj represents the number of copies of item j
that are packed, pj is a cap (an upper bound) on the number of copies of item j, bj is the benefit
obtained by packing item j, and ci is the capacity of the ith constraint. The online character of
opip is expressed by the following additional assumptions: (i) knapsack constraints arrive one
by one, and (ii) the variables can only be decreased. The special case, where A ∈ {0, 1}m×n and
c = 1n is known as Online Set Packing [8].

An LP-relaxation of (PIP) is obtained by replacing the integrality constraints by xj ≥ 0, for
every j. It follows that the integral version of the dual of the LP-relaxation is:

min
m∑
i=1

ciyi +
n∑
j=1

pjzj

s.t.
m∑
i=1

aijyi + zj ≥ bj ∀j

yi ∈ N ∀i
zj ∈ N ∀j

(TF)

The program (TF) describes the offline version of the second problem considered in this paper,
called the Team Formation problem (for reasons that will become apparent below). In this
problem we are given n elements, where element j has a covering requirement bj and a penalty pj .
There are m sets,1 where the coverage of set i of element j is aij and its cost is ci. The solution
is a collection of the sets, where multiple copies of sets are allowed. The cost of a solution is the
cost of selected sets plus the penalties for unsatisfied covering requirements. In (TF), the value of
yi represents the number of copies of i taken by the solution, and zj is the amount of unsatisfied
coverage of set j (for which we pay penalty).

Our online version of the Team Formation problem, denoted otf, is as follows. Initially, the
elements are uncovered—and hence incur a unit penalty per each unit of uncovered element. Sets

1We misuse the term “set” for simplicity.

1

with various coverage and cost arrive online. In each time step, a new set arrives, and the algorithm
must decide how many copies of the arriving set to add to the solution. The goal is to minimize
the total cost of sets taken plus penalties for uncovered elements.

Our main measure, as is customary with online algorithms, is the competitive ratio: in the
covering case, the ratio of cost incurred by the algorithm (expected cost if the algorithm is random-
ized) to the best possible cost for the given instance, and in the packing case, the ratio between
the benefit earned by the optimum solution to the (expected) benefit earned by the algorithm.

Motivation. The otf problem is an abstraction of the following situation (corresponding to a
binary matrix and binary requirements). We are embarking on a new project that requires some
n skills. The requirement for skill j can be satisfied by outsourcing for some cost pj , or by hiring
an employee who possesses skill j. The goal is to minimize the project cost under the following
procedure: We interview candidates one by one. After each interview we know the skills and the
hiring cost of the candidate and must then decide irrevocably whether to hire the candidate.

The opip problem originates from the following natural networking situation [8]. High-level
information units, called frames, can be too large to fit in a single network packet, in which case
the frames are fragmented into multiple packets. As packets traverse the network, they may arrive
at a bottleneck link that cannot deliver them all, giving rise to a basic online question: which
packets to drop so as to maximize the number of frames that are delivered in full. If we ignore
buffers, this question is precisely our version of opip. Namely, in each time step i, a burst of packets
arrives, corresponding to the ith constraint in (PIP): aij is the size of the packet from frame j that
arrives at step i, and ci is the total size that the link can deliver at time i.

Our problems appear unique in the literature of online computation in that solutions get pro-
gressively smaller with time. Traditionally, the initial solution is expected to be the empty set,
and its value or cost only increases as the input is progressively presented. In our class of prob-
lems, some aspects of the input are known, inducing a näıve initial solution. The presented input
progressively elucidates the structure of the instance, adding more constraints (in maximization
problems) or providing increasing opportunities for cost reductions or optimizations (in minimiza-
tion problems). In reality, the issue is often less what to include than what to keep. We feel that
this complementary viewpoint is natural and deserves further treatment.

Contribution and results. The contributions of this paper are twofold. On the conceptual level,
we are the first to formalize the otf problem, to the best of our knowledge (the opip problem was
introduced in [8]). On the technical level, we present nearly tight results for both the opip and the
otf problems.

For opip, we extend the results of [8] from a binary matrix to the case of general non-negative
integer demands. This is a useful extension when we consider our motivating network bottleneck
scenario: it allows the algorithm to deal with packets of different size, while previous solutions
were restricted to uniform-size packets. The competitive ratio of our algorithm is O(Cmax

√
ρmax),

where Cmax the maximal sum of entries in a column, and ρmax is the maximal ratio of the load on
constraint i, namely

∑
j pjaij , to its capacity ci. Observe that for the case of unit caps (i.e., p = 1),

ρmax is the sum of entries in a row i to its capacity ci. We remark that the extension is non-trivial,
although it uses known techniques.

2

Regarding otf, we prove matching upper and lower bounds on the competitive ratio: We
show that even randomized algorithms cannot have competitive ratio better than Ω(

√
ρmax), where

ρmax is the maximal ratio, over all elements, between the highest and lowest cost of covering a
given element. This result holds even for the case where the algorithm may discard a set from its
running solution (but never takes back a set that was dismissed). On the other hand, we give a
simple deterministic algorithm with a competitive ratio of O(

√
ρmax). The algorithm requires prior

knowledge of the value of ρmax; we show that without such knowledge only the trivial O(ρmax)
bound is possible.

We note that our techniques can be used for the variant of otf in which yi is bounded (e.g.,
there is only one copy of a given candidate).

Related work. Online packing was studied in the past, but traditionally the elements of the
universe (equivalently, the constraints) are given ahead of time and sets arrive on-line (e.g., in [2]).
In a similar vein, online set cover was defined in [1] as follows. A collection of sets is given ahead
of time. Elements arrive online, and the algorithm is required to maintain a cover of the elements
that arrived: if the arriving element is not already covered, then some set from the given collection
must be added to the solution. Our problems have the complementary view of what is known in
advance and what arrives online (see also [5]).

Let us first review some results for the offline packing problem pip. The single constraint case
(m = 1) is simply the Knapsack problem, which is NP-hard and has an FPTAS [21, 17]. If
the number of constraints is constant, the offline version of pip becomes the Multi-dimensional
Knapsack problem that has a PTAS [11], while obtaining an FPTAS is NP-hard [18]. Ragha-
van and Thompson [20] used randomized rounding to obtain solutions whose benefit is t1 =
Ω(opt/m1/α) for pip, where α = minj mini

cj
aij

. A solution of benefit t2 = Ω(opt/m1/(α+1))

is also given for the case where A ∈ {0, 1}m×n. (In this case α = minj cj .) Srinivasan [22] im-

proved these results by obtaining solutions whose benefits are Ω(t
α/(α−1)
1) and Ω(t

α/(α−1)
2). Chekuri

and Khanna [6] showed that, for every fixed integer α and fixed ε > 0, pip with c = αm and
A ∈ {0, 1}m×n cannot be approximated within a factor of m1/(α+1)−ε, unless NP=ZPP. They also
showed that pip with uniform capacities cannot be approximated within a factor of m1/(α+1)−ε,
unless NP=ZPP, even with a resource augmentation factor α. (In this case the solution x satisfies
Ax ≤ αc.)

As mentioned before, the special case of pip where A ∈ {0, 1}m×n and c = 1n is known as
set packing. This problem is as hard as Maximum Independent Set even when all elements
have degree 2 (i.e., A contains at most two non-zero entries in each row), and therefore cannot be
approximated to within a factor of O(n1−ε), for any ε > 0 [15]. In terms of the number of elements
(constraints, in pip terms), set packing is O(

√
m)-approximable and hard to approximate within

m1/2−ε, for any ε > 0 [13]. When set sizes are at most k (A contains at most k non-zero entries in
each column), it is approximable to within (k+ 1)/3 + ε, for any ε > 0 [7], and within (k+ 1)/2 in
the weighted case [4], but known to be hard to approximate to within o(k/ log k)-factor [16].

opip was introduced in [8], assuming that the matrix is binary, namely each set requires either
one or zero copies of each item. A randomized algorithm was given for that case with a competitive
ratio of O(k

√
ν), where k is the maximal set size and ν is the maximal ratio, over all items, between

the number of sets containing that item to the number of its copies. In opip terms this bound is
O(Cmax

√
ρmax). A nearly matching lower bound of Ω̃(k

√
ν) was also given for the unit capacities

3

case. Subsequent work extended these results to allow for redundancy [19], i.e., when the benefit
of a set is earned when at least a β-fraction of its elements are assigned to it, for some fixed β > 0.
For the special case of unit capacity opip in which the constraint matrix has the consecutive ones
property, a deterministic O(logRmax)-competitive algorithm was given in [14], where Rmax the
maximal sum of entries in a row, as well as a matching lower bound.

Previously, the online packing problem where sets arrive online and constraints are fixed was
defined in [2], and an O(log n)-competitive algorithm given for the case when each set requires
at most a 1/ log n-fraction of the cap of any element. A matching lower bound shows that this
requirement is necessary to obtain a polylogarithmic competitive ratio.

Regarding team formation, we are unaware of any prior formalization of the problem, let
alone analysis. The online cover problem defined in [1] has an algorithm with competitive ra-
tio O(log n logm). Another related problem is the secretary problem (see, e.g., [12, 10]; further
results and references can be found in [9, 3]). In this family of problems, n candidates arrive in
random order (or with random value), and the goal is to pick k of them (classically, k = 1) that
optimize some function of the set, such as the probability of picking the candidates with the top k
values, or the average rank of selected candidates. The difficulty, similar to our otf formulation, is
that the decision must be taken immediately upon the candidate’s arrival. However, the stipulation
that the input is random makes the secretary problem very different from otf. Another difference
is that unlike otf, the number of candidates to pick is set in advance.

Paper organization. The remainder of this paper is organized as follows. In Section 2 we
introduce some notation. In Section 3 we describe and analyze our online algorithm for opip, and
in Section 4 we consider otf.

2 Preliminaries

In this section we define our notation. Given a matrix A ∈ Nm×n, let R(i) =
∑

j aij be the
sum of entries in the ith row, and let C(j) =

∑
i aij be the sum of entries in the jth column.

Denote Rmax = maxiR(i) and Cmax = maxj C(j). Define ρ(i) = (
∑

j pjaij)/ci, for every i, and
ρmax = maxi ρ(i).

Observe that if
∑

j pjaij ≤ ci for some i, in an opip instance, then constraint i is redundant.
Hence, we assume w.l.o.g. that

∑
j pjaij > ci for every i, which means that ρ(i) > 1, for every i.

We assume hereafter that gcd(ai1, . . . , ain, ci) = 1, for every i. Otherwise, we may divide
ai1, . . . , ain, and ci by this common factor. This does not change ρ(i), but it may decrease Cmax

and our bound on the competitive ratio. On the other extreme, we assume that aij ≤ ci for every
i and j: if aij > ci then item j is not a member in any feasible solution.

Given a subset J of items and a constraint i, let J(i) = {j ∈ J : aij > 0} be the subset of
items from J that participate in constraint i. For example, if opt is the set of items in some fixed
optimal solution, then opt(i) denotes the items in opt that are active in constraint i. Also, let
RJ(i) =

∑
j∈J aij , and define the weighted benefit of a constraint i as wb(i) =

∑
j aij · bj .

Given an otf instance, R(i) =
∑

j aij is the coverage potential of a single copy of set i, and∑
j pjaij is the potential savings in penalties of a single copy of set i. Hence, ρ(i) is the ratio

between the savings and cost of set i, namely it is the cost effectiveness of set i. Observe that we

4

may assume that ρ(i) > 1, since otherwise we may ignore the set. Intuitively, the cheapest possible
way to cover the elements is by sets with maximum cost effectiveness. Hence, ignoring the sets and
simply paying the penalties (i.e., the solution y = 0 and z = b) is a ρmax-approximate solution.

3 Online Packing Integer Programs

In this section we present a randomized algorithm for opip whose competitive ratio is 2Cmax
√
ρmax.

We describe an algorithm for opip with unit caps, namely for the case where pj = 1, for every j, that
is a slight generalization of the algorithm given in [8], allowing us to deal with non-binary instances.
We solve the general case by simply treating each item j as pj items, namely by duplicating the
jth column pj times. Observe that this transformation does not change Cmax or ρmax.

For the rest of this section we assume that unit item upper bounds, namely that p = 1. In
particular, we assume that ρ(i) = R(i)/ci, for every i.

Random variables. For w > 0, let Dw : R→ [0, 1] be a (cumulative) distribution function of a
random variable Z that is defined by

Dw(z) = Pr[Z ≤ z] =

0 if z < 0;
zw if 0 ≤ z < 1;
1 if 1 ≤ z.

Note that D1 is the uniform distribution over [0, 1] and, in general, for a positive integer q, Dq is the
distribution of the maximum of q independent and identically distributed variables, each uniformly
distributed over [0, 1].

Algorithm RP. Initially, we independently choose for each item j a random priority r(j) ∈ [0, 1]
with distribution Dbj . When constraint i arrives, we construct ci subsets Si1, . . . , Sici as follows.
Each item j chooses aij subsets at random. Then, for each subset Si`, ` ∈ {1, . . . , ci}, we reject all
items but the one with the highest priority. Observe that an item survives only if it has the highest
priority in all of its chosen sets.

Example 1. Supposed that the instance contains four items whose priorities are r(1) = 0.5, r(2) =
0.8, r(3) = 0.4, and r(4) = 0.9. Upon arrival of the ith constraint: x1 + 3x2 + 2x3 + 2x4 ≤ 4,
Algorithm RP constructs ci = 4 random subsets: Si1 = {1, 3}, Si2 = {2, 3, 4}, Si3 = {2, 4}, and
Si4 = {2}. Item 2 is eliminated due to S2 and S3, while Item 3 is eliminated due to S1 and S2.
Items 1 and 4 are not eliminated by this constraint.

Intuitively, the approach is to prefer items with high priority. In the special case where aij ∈
{0, 1}, one may simply choose the ci items with highest priority. A somewhat more subtle approach,
based on a reduction to the unit capacity case is used in [8]: Items are randomly partitioned into ci
equal-size subsets; from each subset only the top priority item survives. Our Algorithm RP use a
variation of this approach: we construct ci subsets whose expected sizes are equal, such that item
j is contained in exactly aij subsets.

5

x1 + 3x2 + 2x3 + 2x4 ≤ 4 =⇒

x1 + x3 ≤ 1
x2 + x3 + x4 ≤ 1
x2 + x4 ≤ 1
x2 ≤ 1

Figure 1: The inequalities that are induced by the sets in Example 1.

A =

...
1 3 2 2
...

Row i =⇒ A′ =

...
1 0 1 0
0 1 1 1
0 1 0 1
0 1 0 0
...

Row

∑
j<i cj + 1

Row
∑

j≤i cj

Figure 2: The rows of A′ that correspond to the inequalities that are given in Figure 1. In this case
we have that R′(

∑
j<i cj + 1) = 2.

Analysis. Observe that each subset Si` induces the following constraint:
∑

j∈Si`
xj ≤ 1. Hence,

the algorithm implicitly constructs a new uniform capacity opip instance by defining the matrix
A′ ∈ {0, 1}(

∑
i ci)×n as follows: a∑

t<i ck+`,j
= 1 if and only if j ∈ Si`. Each row of A′ corresponds

to one of the random constraints generated by the algorithm. See example in Figure 1.

In what follows we use m′ to denote the number of rows in A′, namely m′ =
∑

i ci. Also, we

use R′(i) to denote
∑

j a
′
ij , C

′(j) to denote
∑m′

i=1 a
′
ij , and so forth. See example in Figure 2. Notice

that b remains the same, since the item set did not change. However, the weighted benefit of a new
constraint i is wb′(i) =

∑
j a
′
ij · bj . Since A′ is binary, wb′(i) is the sum of benefits that correspond

to variables that appear in new constraint i.

Observation 1. C(j) = C ′(j), for every j, and E[R′(
∑

t<i ct + `)] = ρ(i), for every i and `.

Proof. C(j) = C ′(j), since the item j appears in aij new constraints with coefficient 1, for every
such constraint i. Each item j participates in the `th new constraint corresponding to original
constraint i with probability aij/ci. Hence,

E

[
R′

(∑
t<i

ct + `

)]
=
∑
j

E
[
a′∑

t<i ct+`,j

]
=
∑
i

aij
ci

=
R(i)

ci
= ρ(i) ,

where the last equality holds in the unit caps case.

Let N [j] denote the items that are in conflict with item j, namely

N [j] = {k : ∃i, ` s.t. j, k ∈ Si`} .

Notice that j ∈ N [j]. We also define N(j) = N [j]\{j}. Clearly, item j is satisfied by the algorithm
if and only if its priority is higher than that of all other items with whom it competes, i.e., if
r(j) > r(k), for every k ∈ N(j).

First, consider the probability of satisfying an item j.

6

Lemma 2. Pr[r(j) > max{r(k) : k ∈ N(j)}] = E
[

bj
b(N [j])

]
.

Proof. Suppose that N(j) = N and let rmax = max{r(k) : k ∈ N}. Then, for any z ∈ [0, 1] we have

Pr[rmax < z] =
∏
k∈N

Pr[r(k) < z] =
∏
k∈N

zbk = z
∑

k∈N bk = zb(N) ;

that is, rmax has distribution Db(N). Hence,

Pr[r(j) > rmax] =

∫ 1

0
Pr[rmax < z] · fr(j)(z)dz =

∫ 1

0
zb(N) · bjzbj−1dz =

bj
b(N) + bj

,

where fr(j) denotes the probability density function of the random variable r(j). It follows that

Pr[r(j) > max{r(k) : k ∈ N(j)}]

=
∑
N

Pr[N(j) = N] · Pr[r(j) > max{r(k) : k ∈ N}|N(j) = N]

=
∑
N

Pr[N(j) = N] · bj
b(N) + bj

= E
[

bj
b(N(j)) + bj

]
,

as required.

Next, we provide a lower bound on the expected performance of Algorithm RP. We abuse
notation by referring to the output of the algorithm by RP, as well.

Lemma 3. For any subset of items J , E[b(RP)] ≥ (
∑

j∈J bj)
2

E[
∑

j∈J b(N [j])]
.

Proof. By Lemma 2 and by linearity of expectation we obtain

E[b(RP)] =
∑
j∈J

bj · Pr[j ∈ RP]

=
∑
j∈J

bj · E
[

bj
b(N [j])

]

= E

∑
j∈J

b2j
b(N [j])

≥ E

[
(
∑

j∈J bj)
2∑

j∈J b(N [j])

]
,

where the inequality is due to the following consequence of the Cauchy-Schwarz inequality (with bj

for αj and b(N [j]) for βj): for positive reals α1, . . . , αn and β1, . . . , βn, we have
∑

j

α2
j

βj
≥ (

∑
j αj)

2∑
j βj

.

Jensen’s inequality (for a non-negative random variable X, E
[
1
X

]
≥ 1

E[X]) then implies that

E[b(RP)] ≥ E

[
(
∑

j∈J bj)
2∑

j∈J b(N [j])

]
≥

(
∑

j∈J bj)
2

E
[∑

j∈J b(N [j])
] ,

7

and the lemma follows.

Our next step is to bound
∑

j∈J b(N [j]). Recall that, since A′ is binary, wb′(i) is the sum of
benefits that appear in new constraint i. Hence, if j appears in new constraint i, its weighted
competition is at most wb′(i).

Lemma 4. Let J be a subset of items. Then,
∑

j∈J b(N [j]) ≤
∑m′

i=1R
′
J(i) · wb′(i).

Proof. Observe that ∑
j∈J

b(N [j]) =
∑
j∈J

∑
k∈N [j]

bk (1)

≤
∑
j∈J

∑
(i,`):j∈Si`

∑
k∈Si`

bk (2)

=
∑
j∈J

∑
(i,`):j∈Si`

b(Si`) (3)

=
m∑
i=1

ci∑
`=1

|Si` ∩ J | · b(Si`)

=
m′∑
i=1

R′J(i) · wb′(i) ,

where (1) and (3) are by definition, and (2) is since there can be more than one collision.

To complete the analysis we derive appropriate upper bounds for the denominator when J = [n]
and when J = opt.

Lemma 5.

E

[
m′∑
i=1

R′[n](i)b̄
′(i)

]
< 2

m∑
i=1

ρ(i) · wb(i) , (4)

E

[
m′∑
i=1

R′opt(i)b̄′(i)

]
≤
∑
j∈[n]

C(j)bj +
∑
j∈opt

C(j)bj ≤ 2
∑
j∈[n]

C(j)bj . (5)

Proof. Consider i′ ∈ [m′] that corresponds to the `th new constraint of original constraint i, and
two items j 6= k. We have that

Pr[j, k ∈ Si`] = Pr[j ∈ Si`] · Pr[k ∈ Si`] =
aij
ci
· aik
ci

,

8

due to the independence of the random choices of j and k. Hence, for i ∈ [m] we have that

E

[
ci∑
`=1

R′J

(∑
t<i

ct + `

)
b̄′

(∑
t<i

ct + `

)]
=

∑
j∈J(i)

∑
k

ci∑
`=1

bk Pr[j, k ∈ Si`]

=
∑
j∈J(i)

aij
ci

∑
k 6=j

cibk
aik
ci

+
∑
j∈J(i)

cibj
aij
ci

≤
∑
j∈J(i)

aij
ci
· wb(i) +

∑
j∈J(i)

aij · bj

≤ ρJ(i) · wb(i) + wbJ(i) .

It follows that

E

[
m′∑
i=1

R′J(i) · wb′(i)

]
≤
∑
i

ρJ(i) · wb(i) +
∑
i

wbJ(i) . (6)

Since ρ(i) > 1, for every i, Inequality (4) is obtained by assigning J = [n] in (6).

To prove Inequality (5) we assign J = opt. In this case, ρopt(i) ≤ 1, for every i, since opt is
a feasible solution. Hence

E

[
m′∑
i=1

R′opt(i) · wb′(i)

]
≤
∑
i

wb(i) +
∑
i

wbopt(i)

=
∑
i

∑
j

aijbj +
∑
i

∑
j∈opt

aijbj

=
∑
j

bj
∑
i

aij +
∑
j∈opt

bj
∑
i

aij

=
∑
j

bjC(j) +
∑
j∈opt

bjC(j) ,

and the lemma follows.

Lemma 5 implies that

Theorem 1.

E[b(RP)] ≥ max

{
b([n])2

2
∑

i ρ(i) · wb(i)
,

b(opt)2

2
∑

j C(j)bj

}
≥ b([n])b(opt)

2
√∑

i ρ(i) · wb(i) ·
∑

j C(j)bj
.

Theorem 1 implies the following:

Corollary 2. There is an opip algorithm with competitive ratio at most 2Cmax
√
ρmax.

Proof. By definition,∑
i

ρ(i) · wb(i) ≤ ρmax

∑
i

∑
j

aijbj = ρmax

∑
j

bjC(j) ≤ ρmaxb([n])Cmax ,

9

and ∑
j

C(j)bj ≤ Cmaxb([n]) .

Hence, it follows from Thm. 1 that

E[b(RP)] ≥ b([n])b(opt)

2
√
ρmaxb([n])Cmax · Cmaxb([n])

=
b(opt)

2Cmax
√
ρmax

,

and we are done.

4 Competitive Team Formation

In this section we provide a deterministic online algorithm for otf and a matching lower bound
that holds even for randomized algorithms. Furthermore, our lower bound holds for a more general
case, where the commitment of the online algorithm is only “one way” in the following sense. Once
a set is dismissed it cannot be recruited again, but a set in the solution at one point may be thrown
out of the solution later.

4.1 An Online Algorithm

Our algorithm generates a monotonically growing collection of sets based on a simple determin-
istic threshold rule. Recall that ρmax is the maximum cost effectiveness, over all sets. Algo-
rithm Threshold assumes knowledge of ρmax and works as follows. Let y be the set vector con-

structed by Threshold, and define zij = max
{
bj −

∑
`≤i a`jy`, 0

}
, i.e., zij is the amount of missing

coverage for element j after the introduction of set i. Note that zij is monotone non-increasing with
i.

The solution is constructed as follows. Upon arrival of a new candidate i, assign yi ← v, where
v is the maximum integer that satisfies

v · ci ≤

∑
j min

{
v · aij , zi−1j

}
· pj

√
ρmax

. (7)

Intuitively, we take the maximum possible number of units of set i that allows us to save a factor of
at least

√
ρmax over the penalties it replaces. Note that min{vaij , zi−1j } is the amount of coverage

that v copies of set i add to element j. Hence, the total amount of penalties that are saved by
v copies of set i is

∑
j min{vaij , zi−1j }pj . Also notice that v is well-defined because (7) is always

satisfied by v = 0.

We show that the competitive ratio of Threshold is at most 2
√
ρmax − 1.

Theorem 3. Let (y, z) be the solution computed by Algorithm Threshold, and let (y∗, z∗) be an
optimal (integral) solution. Then,∑

i

ciyi +
∑
j

pjzj ≤ (2
√
ρmax − 1)

∑
i

ciy
∗
i +

∑
j

pjz
∗
j .

10

Proof. We first bound
∑

i ciyi. By condition (7),∑
i

ciyi ≤
1

√
ρmax

∑
i

∑
j

min{aijyi, zi−1j } · pj

=
1

√
ρmax

∑
j

pj
∑
i

min{aijyi, zi−1j }

≤ 1
√
ρmax

∑
j

pj(bj − zj) ,

where the second inequality follows since min{aijyi, zi−1j } is the amount of coverage that is added

to j in the ith round, and therefore the total coverage of j,
∑

i min{aijyi, zi−1j }, is at most bj − zj .
On the other hand, since ρ(i) = (

∑
j pjaij/ci), for every i, we have that∑

i

ciy
∗
i =

∑
i

1

ρ(i)
y∗i
∑
j

pjaij ≥
1

ρmax

∑
j

pj
∑
i

y∗i aij ≥
1

ρmax

∑
j

pj(bj − z∗j) .

It follows that ∑
i

ciyi ≤
1

√
ρmax

∑
j

pj(bj − zj)

=
1

√
ρmax

∑
j

pj(bj − z∗j) +
∑
j

pjz
∗
j −

∑
j

pjzj

≤ √ρmax

∑
i

ciy
∗
i +

1
√
ρmax

∑
j

pj(z
∗
j − zj) .

Next, we turn to bound the penalties that (y, z) pays and (y∗, z∗) does not pay, namely we
bound

∑
j pj max{zj − z∗j , 0}. Define

∆i = max {y∗i − yi, 0} .

If ∆ = 0, then zj ≤ z∗j , for every j, and we are done. Otherwise, let i be an index such that ∆i > 0.
Due to condition (7) in the ith step, we have that

ciyi ≤
∑

j min{aijyi, zi−1j } · pj√
ρmax

while

ciy
∗
i >

∑
j min{aijy∗i , z

i−1
j } · pj√

ρmax
.

Observe that j’s coverage increases by min{aijyi, zi−1j } = zij − z
i−1
j in the ith step. If we further

increase yi to y∗i we may gain min{∆iaij , z
i
j} additional coverage for item j. Hence,

ci∆i = ciy
∗
i − ciyi >

∑
j min{aij∆i, z

i
j} · pj√

ρmax
≥
∑

j min{aij∆i, zj} · pj
√
ρmax

.

11

It follows that

√
ρmax

∑
i

ci∆i >
∑
i

∑
j

min{aij∆i, zj} · pj

≥
∑
j

pj min

{∑
i

aij∆i, zj

}
≥
∑
j

pj max{zj − z∗j , 0} ,

where the last inequality follows from the fact that y + ∆ ≥ y∗ and therefore ∆ covers at least
max{zj − z∗j , 0}, for every j. Hence,∑

j

pj max{zj − z∗j , 0} ≤
√
ρmax

∑
i

ci∆i ≤
√
ρmax

∑
i

ciy
∗
i .

Putting it all together, we get that∑
i

ciyi +
∑
j

pjzj ≤
∑
i

ciyi +
∑
j

pjz
∗
j +

∑
j

pj max{zj − z∗j , 0}

≤ √ρmax

∑
i

ciy
∗
i +

1
√
ρmax

∑
j

pj(z
∗
j − zj) +

∑
j

pjz
∗
j +

∑
j

pj max{zj − z∗j , 0}

≤ √ρmax

∑
i

ciy
∗
i +

∑
j

pjz
∗
j + (1− 1/

√
ρmax)

∑
j

pj max{zj − z∗j , 0}

≤ (2
√
ρmax − 1)

∑
i

ciy
∗
i +

∑
j

pjz
∗
j ,

as required.

This leads us to an upper bound on the competitive ratio.

Corollary 4. Algorithm Threshold is (2
√
ρmax − 1)-competitive.

We note that the same approach would work for the variant of otf in which there is an upper
bound ui on the number of copies of set i that can be used, i.e., yi ≤ ui. In this case the value of
v in condition (7) is also bounded by ui. The rest of the details are omitted.

4.2 A Lower Bound

In this section we present a matching lower bound, which holds for randomized algorithms, and
even for the case where the algorithm may discard a set from its running solution (but never takes
back a set that was dismissed).

We start with a couple of simple constructions. In the first construction, the input consists of
sets of size one, and in the second all costs and penalties are the same.

Theorem 5. The competitive ratio of any randomized online algorithm for otf is Ω(
√
ρmax). This

bound holds for inputs with only two elements and sets of size one, with unit coverage and uniform
penalties.

12

Proof. Let alg be a randomized algorithm. Consider an input sequence consisting of two elements
with unit covering requirement and penalty p. The arrival sequence is composed of two or three
sets. The first set to arrive is {1} of cost 1. (The goal of the first set is to make sure that the ratio
between the penalty and the minimum cost is p.) The second set is {2} of cost

√
p. If alg takes

this set with probability less than half, then the sequence ends; otherwise, the third set {2} of cost
1 arrives.

In the first case the optimal cost is 1 +
√
p, while alg pays at least 1 + 1

2p. Otherwise, the
optimal cost is 2, while alg pays at least 1 + 1

2

√
p. Notice that we may repeat the second part of

this sequence as many times as needed. Finally, notice that ρmax = p.

Theorem 6. The competitive ratio of any randomized online algorithm for otf is Ω(
√
ρmax). This

bound holds for inputs with unit costs and penalties.

Proof. Let alg be a randomized algorithm. Assume unit penalties and unit coverage requirements.
Consider the input sequence that starts with

√
n candidates, each with

√
n fresh skills and cost 1.

Let ` be the expected number of candidates alg takes from this sequence. If ` <
√
n/2, this is

the whole input. In this case the expected cost of alg is at least 1
2n, whereas the optimal cost is√

n. If ` ≥ 1
2

√
n, then we add an omnipotent candidate (who has all skills) at the end, with cost 1.

It follows that alg pays at least 1
2

√
n in expectation, while opt pays only 1. Finally, notice that

ρmax = n.

Next, we give a lower bound construction that applies to the more general setting in which the
algorithm may discard a set from its solution.

Theorem 7. The competitive ratio of any randomized online algorithm for otf is Ω(
√
ρmax). This

bound holds even if the algorithm is allowed to discard sets. Furthermore, it holds also in the binary
case, where all demands, coverages, penalties and costs are either 0 or 1.

Proof. Our lower bound construction uses affine planes defined as follows. Let n = q2, where q
is prime. In our construction, each pair (a, b) ∈ Zq × Zq corresponds to an element. Sets will
correspond to lines: a line in this finite geometry is a collection of pairs (x, y) ∈ Zq × Zq satisfying
either y ≡ ax + b (mod q), for some given a, b ∈ Zq, or of the form (c, ∗) for some given c ∈ Zq.
There are q2 + q = Θ(n) such lines.

The important properties we use are the following:

1. All points can be covered by q disjoint (parallel) lines.

2. Two lines that intersect in more than a single point are necessarily identical.

We now describe the lower bound scenario. The elements correspond (in a 1-1 fashion) to the
points in the affine plane. All elements have unit penalty and unit covering requirement, i.e., pj = 1
and bj = 1, for every j. The input sequence starts with a sequence of q2 + q sets corresponding to
all distinct lines of the plane, each with unit cost. Fix any randomized online algorithm alg. We
proceed by cases, depending on the expected number r of these sets that alg retains at this point.
If r ≤

√
n/2 or r > n/2, then we are already done: at this time the cost to the algorithm is Ω(n)

(due either to penalties or to the cost of sets retained), while the optimal cost at this time is
√
n

by virtue of Property (1) above.

13

Otherwise,
√
n/2 < r ≤ n/2. Let L be a line chosen uniformly at random. The probability that

L is retained by the algorithm is at most 1/2, since r ≤ n/2. We now extend the input sequence

by one more set Lc
def
= {1, ..., n} \ L, and assign Lc unit cost. Note that by Property (2), if L is

not retained by the algorithm, then the number of other lines that cover the points of L cannot be
smaller than |L| =

√
n, and hence the expected cost of alg due only to the points of L (either by

covering set costs or by incurred penalties) is at least
√
n/2. Obviously, throwing out any set from

the solution at this time will not help to reduce the cost. On the other hand, the optimal solution
to this scenario is the sets L and Lc, whose cost is 2, and hence the competitive ratio is at least
Ω(
√
n).

Remarks. First, we note that in the proof above, the unit-cost set Lc can be replaced by
√
n− 1

sets, where each set covers
√
n elements and costs 1√

n−1 . Second, we note that one may be concerned

that in the first case, the actual ρmax of the instance is not n. This can be easily remedied as follows.
Let the instance consist of 2n elements: n elements in the affine plane as in the proof, and another
n dummy elements. The dummy elements will be all covered by a single set that arrives first in
the input sequence. The remainder of the input sequence is as in the proof. This allows us to
argue that the actual ρmax is indeed n, whatever the ensuing scenario is, while decreasing the lower
bound by no more than a constant factor.

The above theorems hold even if ρmax is known to the algorithm. However, if ρmax is unknown,
and discarding sets is not allowed, then we get a stronger lower bound.

Theorem 8. The competitive ratio of any randomized online algorithm for otf is Ω(ρmax), if
the algorithm cannot discard sets and has no knowledge of ρmax. It holds even in the case of unit
penalties, demands and coverage.

Proof. Let alg be a randomized algorithm. Suppose for the sake of deriving a contradiction that
there is an arbitrarily slow growing invertible function h such that alg has competitive ratio at
most ρmax/h(ρmax).

For every sufficiently large x, we shall construct an instance I with ρmax = ρmax(I) ≥ x for
which the performance ratio of alg is at least 2ρmax/h(ρmax). This contradicts the assumption of
the competitive ratio of alg, implying the theorem.

Let x be value satisfying satisfying h(x) ≥ 4 and let f(x) = h(x)/4. The instance we construct
as follows has only one element with unit penalty. A set arrives with cost 1/x. If alg takes the
set with probability less than 1

2 , we stop. Otherwise, we present a second set with cost 1/f−1(x).

In the former case, ρmax = x, the expected cost of alg is at least 1
2 , and opt pays 1/x, for a

competitive ratio of
E[alg]

opt
≥ 1/2

1/x
=
ρmax

2
≥ 2ρmax

h(ρmax)
.

In the latter case, ρmax = f−1(x), which means that x = f(ρmax). The expected cost of alg is at
least 1/(2x) = 1/(2f(ρmax)), while the cost of opt is 1/f−1(x) = 1/ρmax. The performance ratio is
then at least ρmax/(2f(ρmax)) ≥ 2ρmax/h(ρmax). In both cases, we obtain a contradiction, implying
the theorem.

It follows that when ρmax is unknown, it will not be possible to obtain an O(
√
ρmax)-competitive

algorithm without the ability to discard sets.

14

5 Conclusion

As mentioned in the introduction, the special case of opip in which the matrix is binary (i.e., each
set requires either one or zero copies of each item) was considered in [8], where an upper bound and
an almost tight lower bound on the competitive ratio of randomized algorithms where presented.
We have shown that a variant of the algorithm from [8] applies to general opip. We note that the
above lower bound applies to the unit capacities case. However, there is no lower bound for opip
with non-unit uniform capacities.

We have proven matching upper and lower bounds on the competitive ratio for otf. We have
shown that even randomized algorithms cannot have competitive ratio better than Ω(

√
ρ
max

). The
lower bound holds even if ρmax is known, and even if one is allowed to drop previously selected sets.
On the other hand, the upper bound is obtained due to a simple deterministic algorithm that does
not drop sets. Unfortunately, our algorithm is based on the prior knowledge of ρmax. It remains
an open question whether there is an O(

√
ρmax)-competitive algorithm that has no knowledge of

ρmax. We have eliminated the possibility of an O(
√
ρmax) upper bound for an algorithm that is not

allowed to discard sets.

Acknowledgement

We thank Moti Medina for going to Berkeley to represent us.

References

[1] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor. The online set cover problem.
SIAM Journal on Computing, 39(2):361–370, 2009.

[2] B. Awerbuch, Y. Azar, and S. A. Plotkin. Throughput-competitive on-line routing. In 34th
IEEE Annual Symposium on Foundations of Computer Science, pages 32–40, 1993.

[3] M. Bateni, M. Hajiaghayi, and M. Zadimoghaddam. Submodular secretary problem and ex-
tensions. In 13th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, volume 6302 of LNCS, pages 39–52, 2010.

[4] P. Berman. A d/2 approximation for maximum weight independent set in d-claw free graphs.
Nordic Journal of Computing, 7(3):178–184, 2000.

[5] N. Buchbinder and J. Naor. Online primal-dual algorithms for covering and packing. Mathe-
matics of Operations Research, 34(2):270–286, 2009.

[6] C. Chekuri and S. Khanna. On multidimensional packing problems. SIAM Journal on Com-
puting, 33(4):837–851, 2004.

[7] M. Cygan. Improved approximation for 3-dimensional matching via bounded pathwidth local
search. In 54th IEEE Annual Symposium on Foundations of Computer Science, pages 509–518,
2013.

15

[8] Y. Emek, M. M. Halldórsson, Y. Mansour, B. Patt-Shamir, J. Radhakrishnan, and D. Rawitz.
Online set packing. SIAM Journal on Computing, 41(4):728–746, 2012.

[9] M. Feldman, J. S. Naor, and R. Schwartz. Improved competitive ratios for submodular secre-
tary problems. In 14th International Workshop on Approximation Algorithms for Combinato-
rial Optimization Problems, volume 6845 of LNCS, pages 218–229, 2011.

[10] P. Freeman. The secretary problem and its extensions: a review. International Statistical
Review, 51(2):189–206, 1983.

[11] A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional 0 − 1
knapsack problem: worst-case and probabilistic analyses. European Journal of Operational
Research, 15:100–109, 1984.

[12] J. P. Gilbert and F. Mosteller. Recognizing the maximum of a sequence. Journal of the
American Statistical Association, 61(313):35–73, 1966.

[13] M. M. Halldórsson, J. Kratochv́ıl, and J. A. Telle. Independent sets with domination con-
straints. Discrete Applied Mathematics, 99(1–3):39–54, 2000.

[14] M. M. Halldórsson, B. Patt-Shamir, and D. Rawitz. Online scheduling with interval conflicts.
Theory of Computing Systems, 53(2):300–317, 2013.

[15] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182(1):105–142,
1999.

[16] E. Hazan, S. Safra, and O. Schwartz. On the complexity of approximating k-set packing.
Computational Complexity, 15(1):20–39, 2006.

[17] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems. Journal of the ACM, 22(4):463–468, 1975.

[18] M. J. Magazine and M.-S. Chern. A note on approximation schemes for multidimensional
knapsack problems. Mathematics of Operations Research, 9(2):244–247, 1984.

[19] Y. Mansour, B. Patt-Shamir, and D. Rawitz. Competitive router scheduling with structured
data. Theoretical Computer Science, 530:12–22, 2014.

[20] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

[21] S. Sahni. Approximate algorithms for the 0/1 knapsack problem. Journal of the ACM,
22(1):115–124, 1975.

[22] A. Srinivasan. Improved approximations of packing and covering problems. In 27th Annual
ACM Symposium on the Theory of Computing, pages 268–276, 1995.

16

