ICE-TCS seminar: Rémy Belmonte

Speaker: Rémy Belmonte (University of Electro-Communications, Tokyo, Japan)Title: Defective Coloring on Classes of Perfect Graphs

  • 3.3.2017, 12:15 - 13:00

ICE-TCS-logo-200px

Date/Time: Friday, 3 March 2017, from 12:15 till about 13:00
Location: M113 - Reykjavík University
Speaker: Rémy Belmonte (University of Electro-Communications, Tokyo, Japan)

Title: Defective Coloring on Classes of Perfect Graphs

Abstract: In Defective Coloring we are given a graph G and two integers /chi_d, \Delta^* and are asked if we can \chi_d-color G so that the maximum degree induced by any color class is at most \Delta^*. We show that this natural generalization of Coloring is much harder on several basic graph classes. In particular, we show that it is NP-hard on split graphs, even when one of the two parameters \chi_d, \Delta^* is set to the smallest possible fixed value that does not trivialize the problem (\chi_d = 2 or \Delta^* = 1). Together with a simple tree-width-based DP algorithm this completely determines the complexity of the problem also on chordal graphs. 

We then consider the case of cographs and show that, somewhat surprisingly, Defective Coloring turns out to be one of the few natural problems which are NP-hard on this class. We complement this negative result by showing that Defective Coloring is in P for cographs if either \Chi_d or \Delta^* is fixed; that it is in P for trivially perfect graphs; and that it admits a sub-exponential time algorithm for cographs when both \Chi_d and \Delta^* are unbounded.