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tS
heduling jobs with pairwise 
on
i
ts is modeled by the graph multi
oloring problem.It o

urs in two versions: in the preemptive 
ase, ea
h vertex may get any set of 
olors, whilein the non-preemptive 
ase, the set of 
olors assigned to ea
h vertex has to be 
ontiguous.We study these versions of the multi
oloring problem on trees, under the sum-of-
ompletion-times obje
tive. In parti
ular, we give a quadrati
 algorithm for the non-preemptive 
ase, anda faster algorithm in the 
ase that all job lengths are short, while we present a polynomial-time approximation s
heme for the preemptive 
ase.1 Introdu
tionIn many real-life situations, non-sharable resour
es need to be shared among users with 
on
i
t-ing requirements. This in
ludes traÆ
 interse
tion 
ontrol [B92℄, frequen
y assignment to mobilephone users [DO85, Y73℄, and session management in lo
al area networks [CCO93℄. Ea
h user
an be identi�ed with a job, the exe
ution of whi
h involves the ex
lusive use of some resour
e,in a given period of time. Indeed, s
heduling su
h jobs with pairwise 
on
i
ts is a fundamentalproblem, in the above areas as well as in distributed 
omputing (see, e.g., [L81, SP88℄).The problem of s
heduling dependent jobs is modeled as a graph 
oloring problem, when alljobs have the same (unit) exe
ution times, and as graph multi
oloring for arbitrary exe
utiontimes. The verti
es of the graph represent the jobs and an edge in the graph between twoverti
es represents a dependen
y between the two 
orresponding jobs, whi
h forbids s
hedulingthese jobs at the same time.More formally, for a weighted undire
ted simple graph G = (V;E) with n verti
es, let thelength of a vertex v be a positive integer denoted by x(v) and 
alled the 
olor requirement ofv. A multi
oloring of the verti
es of G is a mapping into the power set of the positive integers,�The extended abstra
t of this paper appeared in COCOON '99 [HKP+99℄.yDept. of Computer S
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	 : V 7! 2Z+ , su
h that j	(v)j = x(v) and adja
ent verti
es re
eive non-interse
ting sets of
olors.The traditional optimization goal is to minimize the total number of 
olors assigned to G.In the setting of a job system, this is equivalent to �nding a s
hedule, in whi
h the time whenall the jobs have been 
ompleted is minimized. Su
h an optimization goal favors the system.However, from the point of view of the jobs themselves, an important goal is to minimize theaverage 
ompletion time of the jobs (or equivalently, the sum of the 
ompletion times). Thisoptimization goal is the 
on
ern of this paper. Formally, in the sum multi
oloring (SMC) problem[BKH+00℄ we look for a multi
oloring 	 that minimizesPv2V f	(v), where f	(v) is the largest
olor assigned to v by 	. This redu
es to the sum 
oloring problem [K89℄ in the 
ase of unit
olor requirements.There are two variants of the summulti
oloring problem. In the preemptive (pSMC) problem,ea
h vertex may get any set of 
olors, while in the non-preemptive (npSMC) problem, the setof 
olors assigned to ea
h vertex has to be 
ontiguous. The preemptive version 
orresponds tothe s
heduling approa
h 
ommonly used in modern operating systems [SG98℄, where jobs maybe interrupted during their exe
ution and resumed at a later time. The non-preemptive version
aptures the exe
ution model adopted in real-time systems, where s
heduled jobs must run to
ompletion.In the 
urrent paper we study the sum multi
oloring problems on trees. Given the hardnessof these problems on general graphs (see below), it is natural to seek out 
lasses of graphs wheree�e
tive solutions 
an be obtained eÆ
iently. Trees 
onstitute the boundary of what we knowto be eÆ
iently solvable, and represent perhaps the most frequently naturally o

urring 
lass ofgraphs.A natural appli
ation, in whi
h the resulting 
on
i
t graph is a tree, is pa
ket routing on atree network topology: ea
h node 
an 
on
i
t over its neighboring links, either with its parentor 
hildren in the tree. Thus, the 
on
i
t graph is indu
ed by the network topology. Con
i
tsamong pro
esses running on a single-user ma
hine (e.g. PCs) are typi
ally for shared data. Inmany operating systems, the 
reation of a new pro
ess is done by `splitting' an existing pro
ess,via a `fork' system 
all (see, e.g., [B86℄). Thus, the set of pro
esses forms a tree where ea
hpro
ess is a node. Con
i
ts over shared data typi
ally o

ur between a pro
ess and its immediatedes
endents/an
estor in that tree, as these pro
esses will share parts of their 
odes. Thus, the
on
i
t graph is also a tree.1.1 Our resultsFor the npSMC problem, we give in Se
tion 3 two exa
t algorithms, with in
omparable 
om-plexity: the �rst one is quadrati
, i.e. O(n2) where jV j = n, while the se
ond is more e�e
tiveif the maximum 
olor requirement p is small, running in time O(np). In both 
ases, non-trivialoptimizations have been made to redu
e the time 
omplexity. The �rst algorithm is still moreeÆ
ient for the spe
ial 
ase of paths, running in time O(n � log p= log log p). (Unless spe
i�edotherwise, all the logarithms in this paper are to the base of 2.)2



For the 
ase of pSMC, we present in Se
tion 4 a polynomial time approximation s
heme(PTAS), along with an exa
t algorithm for a limited spe
ial 
ase. A partitioning result of[HK02℄ allows us to improve the time-approximation tradeo�s of this method. Spe
i�
ally, wegive a PTAS for pSMC using at most 1=�3 � (log 1=�)2 preemptions per vertex, running in timeexp((1=� � log 1=�)3)n. This implies that we 
an obtain 1+O((log logn= log n)1=3)-approximationin polynomial time, and for any �xed �, we 
an a
hieve a (1 + �)-approximation in linear timewith a 
onstant number of preemptions in the 
oloring of ea
h vertex.Finally, we dis
uss in Se
tion 5 several generalizations of the problem, to whi
h our algorithms
ontinue to apply, and mention open problems for further study.1.2 Related workThe sum multi
oloring problem was introdu
ed by Bar-Noy et al. [BKH+00℄. They presenteda 
omprehensive study of the approximability of both the pSMC and the npSMC problems, ongeneral and spe
ial 
lasses of graphs.The sum 
oloring problem was introdu
ed by Kubi
ka [K89℄, who gave a polynomial algo-rithm for trees. Jansen [J97℄ extended the dynami
 programming strategy to partial k-trees.These dynami
 programming algorithms 
an be seen to generalize to multi
oloring, leading toalgorithms that are polynomial in n and p, e.g. O(p2n log n). However, the additions in thispaper are needed to obtain an algorithm polynomial in n only, or to redu
e the 
omplexity toO(pn).Known hardness results for the sum 
oloring problem 
arry over to the sum multi
oloringproblem. It is NP-hard on interval graphs [S99℄, planar graphs [HK02℄, and line graphs [BBH+98℄,and NP-hard to approximate within some 
onstant 
 � 1 on bipartite graphs [BK98℄. On gen-eral graphs, it is hard to approximate within fa
tor n1��, for any � > 0 unless NP = ZPP[FK96, BBH+98℄.Marx [M02℄ has re
ently shown that pSMC is NP-hard on trees, answering a question posedin an earlier version of this paper [HKP+99℄. His result holds for even binary trees when theweights are polynomially bounded.Resour
e-
onstrained s
heduling has re
ently been investigated in the vast literature ofs
heduling algorithms (see e.g. [BK96, K96℄). A spe
ial 
ase involves the s
heduling of mul-tipro
essor jobs on dedi
ated pro
essors. Kubale [K96℄ studies the 
omplexity of s
hedulingbipro
essor jobs, whi
h 
orresponds to multi
oloring line graphs. He also investigates spe
ial
lasses of graphs, and shows that npSMC of line graphs of trees is NP-hard in the weak sense,but leaves it open for pSMC.Halld�orsson and Kortsarz [HK02℄ have generalized some of the results of this paper tothe 
lass of partial k-trees (or, graphs of bounded treewidth). In parti
ular, they gave anO(n(p log n)k+1) algorithm for npSMC, and a (1 + �)-approximation in time nO(1=�)3 for pSMC.Noti
e that for both models, the algorithms of this paper have 
onsiderably better 
omplexitybounds for the 
ase of trees (k = 1). The [HK02℄ paper also gave PTASes for planar graphs inboth models. 3



2 De�nitions and NotationAn instan
e of a multi
oloring problem is a pair (G;x) where G = (V;E) is a graph andx : V ! Z+ is a ve
tor of 
olor requirements (or lengths) of the verti
es. We denote byp = maxv2V x(v) the maximum 
olor requirement in G.A multi
oloring of G is an assignment 	 : V ! 2Z+ , su
h that ea
h vertex v is assignedx(v) distin
t 
olors and adja
ent verti
es re
eive non-interse
ting sets of 
olors. The start time(�nish time) of a vertex v under 	 is the smallest (largest) 
olor assigned to v, denoted bys	(v) = minfiji 2 	(v)g (f	(v) = maxfiji 2 	(v)g). A multi
oloring 	 is 
ontiguous, ornon-preemptive, if for any v, f	(v) = s	(v) + (x(v) � 1). The sum of a multi
oloring 	 of aninstan
e (G;x) is the sum of the �nish times of the verti
es Pv2V f	(v). The minimum sum ofa preemptive (non-preemptive) multi
oloring of G is denoted by pSMC(G) (npSMC(G)).We denote by n the number of verti
es of the input instan
e. For a vertex v, d(v) is thedegree and N(v) is the set of neighbors of v. When T is a rooted tree, we denote by Tv thesubtree rooted at v, 
h(v) denotes the set of 
hildren of v, and p(v) its parent. Finally, we denoteby [x; y℄ the interval of natural numbers fx; x+ 1; : : : ; yg.We use the following bound on the number of 
olors used. Let us view 
oloring as a sequentialpro
ess where in ea
h step i an independent set is sele
ted and the respe
tive verti
es assignedthe 
olor i. This 
an be viewed as a timeline, with the 
olor requirements of the verti
es beingsatis�ed in
rementally.Lemma 2.1 Consider an optimal sum multi
oloring (preemptive or non-preemptive) of a bipar-tite graph, and let n0 be the number of verti
es that are not fully 
olored at some point. Then,at least n0=2 of these verti
es are fully 
olored after additional 2p steps.Proof. We fo
us on the delay 
osts of the remaining n0 verti
es, i.e. the number of time stepsbefore their 
ompletion during whi
h they are not being 
olored. A 
oloring of these n0 verti
esthat 
ompletes less than half of them in 2p steps in
urs a delay of more than pn0=2.Consider the following alternative 
oloring. If V1; V2 is a bipartition of the graph with jV1j >jV2j, 
olor V1 �rst to 
ompletion, followed by V2. The delay in
urred is at most pjV2j � pn0=2.Lemma 2.1 implies the following 
laim, sin
e at most one vertex remains after 2p log n steps.Claim 1 Optimum sum multi
olorings (preemptive or non-preemptive) of a bipartite graph useat most O(p � logn) 
olors.A bound on the number of 
olors in an approximate solution was given in [HK02℄. We stateits preemptive version for bipartite graphs.Claim 2 Any bipartite graph G has a (1 + �)-approximate preemptive sum multi
oloring thatuses at most 2p(lg 1=�+ 2) 
olors.Proof. Observe that a round-robin s
hedule of G, that 
olors the bipartitions alternately inodd and even time steps, 
ompletes ea
h job within twi
e its length. Thus, pSMC(G) � 2S(G),where S(G) = Pv2V x(v). It follows that in an optimal sum 
oloring, at most S(G)=p verti
esremain to be 
ompleted by step 2p. By repeated appli
ations of Lemma 2.1, at most S(G) � �=p4



remain after 2p lg 1=� additional steps. If we now trun
ate the optimal 
oloring there, and 2-
olor the remaining verti
es using 2p 
olors, the added 
ost of 
oloring these verti
es is at mostp � S(G) � �=p � pSMC(G) � �. The total number of 
olors used will be p(4 + 2 lg 1=�).3 Non-preemptive multi
oloringWe say that vertex v is grounded in a multi
oloring 	, if the smallest of v's 
olors is 1, i.e. s	(v) =1, and v is 
anked in 	 by a neighbor u, if the smallest 
olor of v is one larger than the largest
olor of u, i.e. s	(v) = 1 + f	(u). We 
all a sequen
e of verti
es v0; v1; : : : ; vm a groundingsequen
e of vm, if v0 is grounded and, for all 0 � i < m, vi+1 is 
anked by vi. Then, vm is saidto be grounded in v0. The following observation is 
alled for.Observation 3.1 (Flanking property) In an optimum npSMC 
oloring of a graph, ea
hvertex v is either grounded or has a 
anking neighbor.It is not diÆ
ult to see that this holds for any minimal 
oloring, where the 
oloring of any onevertex 
annot be redu
ed without 
reating an improper 
oloring. It follows from the Flankingproperty that a grounding sequen
e v0; v1; : : : ; vm of a vertex vm 
ompletely determines the
oloring of vm. In fa
t, s	(vm) equals the sum of 
olor requirements of v0; : : : ; vm�1 plus 1.In our sear
h for an optimum npSMC 
oloring on trees, we examine possible groundingsequen
es. We note that sin
e ea
h pair of verti
es 
an be 
onne
ted by a single path, thetotal number of paths is �n2�; thus, the number of grounding sequen
es is n2. This is theproperty of trees that is not shared by important larger 
lasses of graphs. It easily leads to apolynomial algorithm for trees. We shall introdu
e additional ideas to redu
e the 
omplexity toO(nmin(n; p)).Our general approa
h is based on dynami
 programming. We arbitrarily root the tree, andgive indu
tive de�nitions of some attributes of the verti
es and their 
orresponding subtrees interms of the attributes of their 
hildren. These attributes 
an be evaluated in any bottom-uporder, e.g. within a DFS or postorder traversal of the tree. Essentially, we 
ompute for ea
hnode v and for ea
h plausible 
oloring of v, the 
ost of the optimal solution of the subtree rootedat v, assuming this parti
ular 
oloring of v. The plausible 
olorings of v 
orrespond, in the �rstalgorithm, to the n possible groundings of v, and in the se
ond algorithm, to all ways in whi
hthe neighbors of v 
an delay v.We spe
ify the 
oloring of verti
es in terms of �nishing times. The �nishing times f(u) andf(v) of adja
ent verti
es u and v must satisfy[f(u)� x(u) + 1; f(u)℄ \ [f(v)� x(v) + 1; f(v)℄ = ; ;for the 
oloring to be valid, in whi
h 
ase we say they are 
ompatible.Remark: We observe that the optimum non-preemptive sum multi
oloring 
an be 
omputedin time independent of p. This may be important within an applied 
ontext, for small values ofn. Namely, for ea
h vertex v, there are at most d(v) + 1 
anking 
hoi
es for v: either 
ankingone of its neighbors, or being grounding. Thus, the number of minimal multi
olorings is at most5
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zFigure 1: The three possible 
ases for grounding of w and p(w).nn. Ea
h 
an be generated and 
he
ked in linear time, hen
e the 
omplexity is O(nn+1). Thisbound is essentially tight, sin
e the number of minimal s
hedules in a 
lique on n verti
es isn! = 
(n=e)n.3.1 An O(n2) algorithm for npSMC of treesAssume that the tree T is arbitrarily rooted in vertex r. We give a dynami
 programmingalgorithm that 
omputes bottom-up a matrix A, where A[u; v℄ 
ontains the minimum 
ost of a
oloring of the subtree Tu, under the 
onstraint that u is grounded in v. The desired solution isthen given by minv A[r; v℄. Let fv(u) denote the �nishing time of u when grounded in v. Namely,fv(u) is the sum of the lengths of the verti
es on the unique path from v to u.Adja
ent verti
es must satisfy the following 
onstraints on their groundings. Let w be anon-root vertex with parent u = p(w). There are only three possibilities for grounding of w andp(w):(i) w and p(w) both grounded in v 2 Tw. Then p(w) is 
anked by w.(ii) w and p(w) both grounded in v 62 Tw. Then w is 
anked by p(w).(iii) w grounded in z 2 Tw and p(w) grounded in v 62 Tw. Then fv(p(w)) and fz(w) must be
ompatible �nishing times.Figure 3.1 illustrates the three 
ases.The minimum 
ost of the subtree Tu when u is grounded in v, A[u; v℄, is given by the�nishing time of u when grounded in v, plus the minimum 
osts of grounding all subtrees of uin a 
ompatible manner. We thus get the formulaA[u; v℄ = fv(u) + Xw2
h(u)8<: A[w; v℄ v 2 Twminz2Tw[fvg(A[w; z℄ : fv(u); fz(w) 
ompatible) v 62 Tw. (1)Sin
e the optimizations in the right-hand side of the formula for A[u; v℄ involve only verti
esin the subtree of u, this gives us a rule for 
omputing the matrix A bottom-up, thus solving theproblem. Note that when u = p(w) is grounded in a vertex v 2 Tw, w must also be grounded in6



v. This is the easy 
ase (i). When u = p(w) is grounded in a vertex v 62 Tw, we have either thesimilarly easy 
ase (ii) where w is also grounded in v, or else the harder 
ase (iii) where we needto optimize over all groundings of w among those z 2 Tw that are 
ompatible with groundingp(w) in v. Be
ause of this harder 
ase (iii), we only have an O(n) bound on the 
omputation ofea
h of the n2 entries of A giving an O(n3) algorithm overall. In the remainder of this se
tionwe show how to 
ompute the entries in 
onstant amortized time with some prepro
essing, givingan O(n2) algorithm overall.In 
omputing 
ase (iii), we need to �nd 
ompatible �nishing times. To do this qui
kly, wepre
ompute, for ea
h vertex in the tree, a sorted list of the �nishing times 
orresponding to then di�erent ways of grounding this vertex. The following lemma shows how to do this eÆ
iently.De�ned the length of a path to be the sum of the lengths of the verti
es on the path.Lemma 3.2 Given a rooted tree T and a length fun
tion x : V (T )! Z+, one 
an 
ompute inO(n2) time a sorted list, for ea
h vertex u 2 V , of the lengths of the paths in T originating in u.Proof. The algorithm has a bottom-up phase followed by a top-down phase. In the bottom-upphase, we 
ompute for ea
h vertex u the sorted list Lu of all lengths of paths from u to verti
esin the subtree Tu. Ea
h entry has the index of the originating vertex as a satellite data. For aleaf u, Lu 
ontains only x(u). For a non-leaf vertex u, Lu is obtained by merging the 
hildren'slists, then adding x(u) to ea
h entry and prepending the entry x(u) to the resulting list.In the top-down phase, ea
h non-root vertex u of T pro
esses the 
ompleted sorted list ofits parent p(u). The entries involving des
endants of u will appear in the same order in that listas in Lu (with values that have been augmented by x(p(u))), and 
an thus be identi�ed whiles
anning the two lists. We extra
t the entries of non-des
endants of u, augment their values byx(u), and merge the resulting list with Lu. This gives the 
omplete list for u. The work doneat ea
h vertex in ea
h phase is O(n), for a total time 
omplexity of O(n2).For u = p(w) grounded in vertex v 62 Tw we now show how to deal with 
ase (iii), i.e. howto 
ompute eÆ
iently minz2Tw(A[w; z℄ : fv(u); fz(w) 
ompatible). Let zi, i = 1; : : : ; t, be theverti
es of Tw ordered su
h that fz1(w) � : : : � fzt(w).First, we extra
t the list A[w; z1℄; : : : ; A[w; zt℄. Next, we 
ompute two ve
tors P and S,
orresponding to pre�x and suÆx minimas of A[w; z1℄; : : : ; A[w; zt℄. Namely,P [w; i℄ = min1�j�ifA[w; zj ℄g; S[w; i℄ = mini�j�tfA[w; zj ℄g:Consider the sorted list fv1(u) � : : : � fvn(u) of all �nishing times for the parent u ofw. Observe that ea
h fvi(u) is in
ompatible only with fzj (w), where j lies in some intervalj = li+1; : : : ; ri� 1. Conversely, fvi(u) is 
ompatible with pre
isely fz1(w); : : : fzli (w) and withfzri (w); : : : ; fzt(w). The minimum 
osts of these ranges are given by P [w; li℄ and S[w; ri℄. Thus,given P and S, we 
an for u grounded in vi 62 Tw easily 
ompute minz2TwfA[w; z℄jfvi (u); fz(w) 
ompatibleg =min(P [w; li℄; S[w; ri℄) in 
onstant time per element. It remains to show how to 
ompute the ve
-tors l and r.Observe that both the start and endpoints of these in
ompatibility intervals are monotonenonde
reasing sequen
es. Thus, we 
an 
ompute li and ri, for all i; 1 � i � n, by a single s
anthrough the two lists of �nishing times for w and p(w). Namely,7



fzt+1(w) 1.l0  0; r0  1for i 1 to n doli  li�1; ri  ri�1while (fvi(p(w)); fzli+1(w) 
ompatible and ri > li + 1)li  li + 1while (fvi(p(w)); fzri (w) are in
ompatible, or fzri (u) < fvi(p(w)))ri  ri + 1Observe that the pro
essing time for 
omputing the ve
tors P; S; l and r is O(n) for ea
hvertex. We 
an therefore 
ompute A[u; v℄ for all pairs u; v bottom-up over u in O(n2) time. Thevalue of the overall optimum 
ost, npSMC of T , is given by minv2T (A[r; v℄). We have obtainedthe following theorem.Theorem 3.3 The npSMC problem 
an be solved for a tree in O(n2) time.3.1.1 Spe
ial 
asesIn the 
ase of paths, we 
an improve the 
omplexity by observing that grounding sequen
esmust be short.Lemma 3.4 The maximum number d of verti
es in a grounding sequen
e v1; : : : ; vd in a pathis O(log p= log log p).Proof. Suppose the verti
es v0; v1; : : : ; vd (d > 2) form a grounding sequen
e in an optimumnpSMC 
oloring 	� of a path. Then, we 
laim thatx(vi) � (d� i) X0�j<ix(vj); for 2 � i < d. (2)It then follows that x(vd�1) � (d� 2)! X1�j<2x(vj) � (d� 2)!Sin
e p � x(vd�1) = d
(d), we have the desired bound.To show inequality (2), 
onsider the 
oloring obtained from 	� by grounding the sequen
evi; : : : ; vd�1 in vi. This may ne
essitate 
anking vi�1 by vi. The former de
reases the 
ost (withrespe
t to SMC(G;	)) byP0�j<i x(vj), for ea
h vertex vi+1; : : : ; vd�1, while the latter in
reasesthe 
ost by at most x(vi). Thus, the 
ost di�eren
e is x(vi)� (d� i)P0�j<i x(vj), whi
h by theassumed optimality of 	� must be nonnegative.Corollary 3.5 The npSMC problem 
an be solved for a path in O(n log p= log log p) time.A redu
tion in the 
omplexity of the tree algorithm 
an also be obtained when the tree hasfew distin
t path lengths. We state the following 
laim without a proof. It implies, e.g., that thenpSMC of a tree of 
onstant height with 
onstant number of di�erent lengths 
an be 
omputedin linear time.Claim 3 Suppose a tree T has the property that from any vertex v, there are at most q di�erentlengths of paths originating from v. Then, npSMC of T 
an be 
omputed in time O(qn).8



3.2 An O(n � p) algorithm for npSMC on treesWe now give an algorithm whose running time is linear in n when p � 1 is a 
onstant.The algorithm Tree-
olor pro
eeds bottom-up on the rooted tree T . The 
oloring of ea
hvertex v involves two tasks:(a) Evaluate the 
ost of the possible �nish times of v and sele
t the optimal one, from whi
hto derive the 
orresponding minimum multi
olor sum of Tv.(b) For v 6= r, prepare a set of at most x(v) + x(p(v)) � 1 < 2p alternative �nish times for v,in the event that p(v) 
hooses a �nish time that interferes with v.Observe that the �nish time of v in a minimal 
oloring is at mostB(v) = x(v) + Xu2N(v)(x(u) + x(v)� 1) = (d(v) + 1)x(v) + Xu2N(v)(x(u)� 1):Namely, ea
h neighbor u of v 
an delay the 
ompletion of v by at most x(u) steps, from its ownlength, plus x(v) � 1, from leaving a \gap" in the set of available 
olors for v.The data required for these 
omputations will be kept in the following integer arrays:� 
ostv[B(v)℄, in whi
h the ith entry gives the minimum 
ost of 
oloring Tv, when the �nishtime of v is set to be i.� altv[B(v)℄, of alternative �nish times for v, in whi
h the jth entry is the optimal �nish timefor v when p(v) has �nish time j.Let f(v) be the �nish time of v that minimizes the 
ost of 
oloring Tv, and minCost(v) =
ostv[f(v)℄ be that 
ost.Ea
h vertex v �lls the arrays in four phases.(i) In the initial phase, v �lls the array 
ostv with values appropriate for the 
ase that no
ollisions o

ur with the optimal 
olors of its 
hildren. LetSubtreeCost(v) Xu2
h(v)minCost(u):Then, for i = x(v); : : : ; B(v), set
ostv[i℄ SubtreeCost(v) + i:(ii) In the se
ond phase, v adjusts the 
ost array to re
e
t 
ollisions with the optimum 
ol-orings of the subtrees rooted at its 
hildren. Spe
i�
ally, for any �nish time i of v thatis in
ompatible with f(u), for u 2 
h(v), v updates the ith entry of 
ostv, using the ithentry of the array altu.Namely, for ea
h u 2 
h(v) and i = f(u)� x(u) + 1; : : : ; f(u) + x(v)� 1,
ostv[i℄ 
ostv[i℄ + 
ostu[altu[i℄℄�minCost(u):The optimal �nish time, f(v), is the value i that minimizes 
ostv[i℄.9



(iii) In this phase, two help ve
tors P and S are 
omputed from 
ostv. The pre�x index-minima of i, P [i℄, is the index in whi
h 
ostv is minimal, in the range [x(v); i℄. That is,for i = x(v); : : : ; B(v), P [i℄ = arg minx(v)�p�i 
ostv[p℄:Thus, e.g., 
ostv[P [i℄℄ � 
ostv[p℄, for x(v) � p � i.Similarly, the suÆx index-minima of i, S[i℄ = argmini�s�B(v) 
ostv[s℄, is the index in therange [i; B(v)℄ in whi
h 
ostv is minimal.(iv) Finally, alternative �nish times are 
omputed. For ea
h possible �nish time j for p(v) thatis in
ompatible with f(v), altv[j℄ should be the index minimizing 
ostv. The 
onstraintimplies that either v is s
heduled before p(v), �nishing no later than j � x(p(v)), or it iss
heduled after p(v), �nishing no earlier than j + x(v). The index minimizing 
ostv in theformer 
ase is then given by P [j�x(p(v))℄, while in the latter 
ase it is given by S[j+x(v)℄.Thus, we assign altv[j℄ the better of the two possibilities.Theorem 3.6 Tree-
olor solves npSMC on trees in O(np) time.Proof. We 
onsider separately the phases performed by a vertex v. The �rst phase takesO(B(v)) steps. In phase (ii), for ea
h 
hild u of v, at most x(u) + x(v)� 1 entries are updatedin 
ostv, for a 
ombined 
omplexity O(B(v)). In phase (iii), the ve
tors P and S 
an be
omputed indu
tively, in O(B(v)) steps ea
h. Initially, P [x(v)� 1℄  S[B(v)+1℄ 1, and forx(v) � i � B(v),P [i℄ ( i if 
ostv[i℄ � 
ostv[P [i� 1℄℄P [i� 1℄ otherwise, S[i℄ ( i if 
ostv[i℄ � 
ostv[S[i+ 1℄℄S[i+ 1℄ otherwise.Finally, the O(p) entries of altv are 
omputed in 
onstant time ea
h. Observe, thatXv B(v) �Xv (2d(v) + 1)x(v) � (4n� 3)p:Thus, summing up the 
omplexity over all the verti
es yields the theorem.4 Preemptive 
aseWe turn our attention in this se
tion to the preemptive version of the multi
oloring problem.Here, we do not have a polynomial algorithm for trees, nor a proof of NP-hardness. Instead,we give the next best possible: a polynomial-time approximation s
hema. We also mention anexa
t algorithm for the 
ase of small 
olor requirements.4.1 Algorithm overviewThe algorithm is a standard dynami
 programming algorithm, but one that attempts to �nd arestri
ted type of a solution. These solutions have the property that there are at most (1=�)O(log p)10



possible 
olorings of ea
h vertex. Given su
h a property, a straightforward dynami
 programmingalgorithm will examine the verti
es bottom-up, trying ea
h possible 
oloring of a vertex, andstoring the 
ost of the subtree for ea
h su
h 
hoi
e. The main part of the argument is to showthe existen
e of a restri
ted solution whose sum is within 1 + � of optimal.We partition the 
olor spe
trum of an optimal 
oloring into layers, whose sizes are geometri
powers of 1+ �. Consider the ith layer Li and the 
oloring of a vertex v within that layer. Notethat as long as f(v) =2 Li, we may alter the 
olors assigned to v within Li. This follows sin
ethe obje
tive fun
tion only takes into a

ount the �nish time f(v). Now suppose that we knowthe amount of 
olors that ea
h vertex has in layer Li. Let s(Li) and f(Li) be the minimumand maximum 
olors in Li. If we 
an \�t" all the required amounts of 
olors for ea
h vertex vwithin the interval [s(Li); f(Li)℄, this does not a�e
t the f(v) values, as long as f(v) =2 Li. Forea
h layer i, this results in a makespan (minimizing the number of 
olors used) instan
e: �t therequired amount of 
olors per vertex in layer i so that the makespan is minimized. Using theminimum makespan 
oloring, we are guaranteed not to overstep Li.It is interesting to note that the makespan problem for bipartite graphs is trivially solvableusing a natural greedy algorithm (see next subse
tion). From this dis
ussion it follows that whengiven the quantities of 
olors per vertex in ea
h layer, we 
an easily approximate the multi
olorsum within (1 + �). Indeed, f(v) may in
rease by (1 + �) due to the 
hanges in the last layer ofv (the layer i su
h that f(v) 2 Li). But sin
e in all the other layers the 
olors do not overstepto the next layer this is the only in
rease.If, on the other hand, we ex
eed the number of 
olors of Li by a small amount, we may a�ordto push all the 
olors of v upwards. Indeed, we may expand ea
h layer Li by a fa
tor of 1 + �,in
reasing f(v) only by the same amount. We use this idea as follows. Let 
i(v) be the exa
tnumber of 
olors assigned to v in Li. \Guessing" the exa
t numbers 
i(v) for ea
h v turns out tobe too expensive. Instead, we guess those quantities up to an additive fa
tor of � �
i(v). Namely,we guess the multiple of � � (f(Li) � s(Li)) of 
olors that v has in ea
h layer i. This de
reasesthe number of possible 
hoi
es down to 1=�. We may be assigning up to � � (f(Li)� s(Li)) extra
olors per vertex, per level i. However, this only in
reases the �nish time of ea
h node by 1+ �,and the �nal multi
oloring sum is within a fa
tor of (1 + �)2 from optimal.4.2 Polynomial time approximation s
heme for pSMC of treesWe �rst study the makespan problem on bipartite graphs. For simpli
ity of exposition, we allowmulti
olorings where at least x(v) 
olors are assigned to ea
h vertex v; 
learly, this does notmake the problem any easier.Lemma 4.1 Let (G;x) be a bipartite instan
e, and let � > 0. Let q = maxuv2E(x(u) + x(v))and let si = b�iq
, for i = 0; : : : d1=�e. Then, there is a 
ontiguous 
oloring 	0 of (G;x) usingb(1+ �)q
 
olors, su
h that for ea
h vertex v there are integers j; j0 su
h that 	0 assigns to v theinterval [sj + 1; : : : ; sj0 ℄ of 
olors.Proof. Observe that q is a lower bound on the number of 
olors needed. Let R;B be a bipartition11



of G, and let r = b(1 + �)q
. Consider the 
ontiguous 
oloring 	0 where	0(v) = ( [1; x(v)℄; when v 2 R[r � x(v) + 1; r℄; when v 2 B.Observe, that there are at least r� q = b�q
 values that separate the 
olors assigned to any pairof adja
ent verti
es. Hen
e, this 
oloring 
an be extended to a 
oloring 	0, given by	0(v) =[j f[sj + 1; sj+1℄ : [sj + 1; sj+1℄ \	0(v) 6= ;g :Let �	 = maxv f	(v) be the makespan (maximum 
olor used) of a multi
oloring 	. Wenow show how a given multi
oloring 
an be massaged into one satisfying several properties. Theidea is to partition the range of possible 
olors into \layers" of geometri
ally in
reasing sizes.We apply Lemma 4.1 to s
hedule the 
olors of all verti
es inside ea
h layer, and to provide uswith the desired restri
tions on the possible 
olorings. The 
ompletion times of the verti
esmay in
rease for two reasons: the expansion fa
tors of ea
h level, and be
ause of 
hanges in thehighest level that a vertex is 
olored in, but we 
an bound both fa
tors by 1 + �.Theorem 4.2 Let (G;x) be a bipartite instan
e, and � > 0. Then, for any multi
oloring 	 ofG, there is multi
oloring 	0, su
h that for ea
h vertex v,1. f	0(v) � (1 + �)f	(v),2. 	0(v) is the union of at most O(log1+� �	) 
ontiguous segments, and3. There are O(1=�) 
hoi
es for the beginning and the end of ea
h segment.Proof. Let �0 = p1 + �� 1. For 1 � i � blog1+� �	
, let qi = d(1 + �0)ie and Li = [qi�1; qi� 1℄.De�ne the instan
es (G;xi), where xi(v) = j	(v) \ Lij.Apply Lemma 4.1 to obtain 
olorings 	0i on (G;xi). Form 	0 by 
on
atenation:	0(v) =[i 8<:z + i�1Xj=0b(1 + �0)qj
 : z 2 	0i(v)9=; :If the highest 
olor of 	(v) was in the layer Li, then f	(v) > qi�1, whilef	0(v) � b(1 + �0)qi
 � (1 + �0)2qi�1 � (1 + �)f	(v);establishing part 1 of the theorem. Parts 2 and 3 also follow from properties of the 	0i 
oloringsof Lemma 4.1. Spe
i�
ally, start and end points within ea
h layer Li are of the form qi�1 + j �� � (qi � qi�1) where 0 � j � b1=�
.Theorem 4.3 For ea
h � > 0, the pSMC problem on trees 
an be approximated within 1 + �fa
tor in time (p � logn)O(1=��log(1=�)) � n. 12



Proof. Let 	 be an optimal pSMC solution, and re
all the properties of the solution 	0 thatTheorem 4.2 has shown to exist. We now argue that we 
an �nd a solution with su
h properties.Traverse the tree in postorder, or any other bottom-up order. For ea
h vertex we 
omputea table of size ry, where y = O(log1+� �	) is the number of segments in the 
oloring 	0 andr = 1=� is the number of possible starting or end points of ea
h segment. There is an entry forea
h possible 
oloring of v under the 
onstraints on 	0 of Theorem 4.2, where we re
ord theminimum 
ost of a 
oloring of the subtree rooted at v, given that 
oloring of v. For ea
h su
h
oloring, we sear
h through the tables of the 
hildren of v for the 
heapest 
olorings of theirsubtrees 
onsistent with that assignment to v, and re
ord the minimum.The amount of 
omputation for a given vertex v is then rO(y)d(v), for a 
ombined time
omplexity of rO(y)n. Sin
e �	 = O(p � log n) by Claim 1, and ln(1+ �) � �, the theorem follows.As presented, the time 
omplexity is only pseudo-polynomial. It is not hard to 
hange thedependen
y on p to a dependen
y on n. However, following the early version of this paper[HKP+99℄, a stru
tural result was given in [HK02℄ that leads to substantial improvements inthe time 
omplexity and/or approximation fa
tors of the above approximation s
heme.Let pG = maxv2G x(v), and lG = minv2G x(v). Let SMC(G;	) denote the sum of a mul-ti
oloring 	 on G. The following is impli
it in [HK02, Prop. 1℄; for 
ompleteness, we give theproof in the appendix.Theorem 4.4 Let G be a multi
oloring instan
e and q = q(n) � 1 an integer. We 
an partitionG in polynomial time into subgraphs G1; G2; : : : ; Gt with the following two properties:1. The ratio pGi=lGi of maximum to minimum 
olor requirements is at most q.2. Suppose we are given 
olorings 	i of Gi, i = 1; : : : ; t, ea
h using at most k � pGi 
olors, forsome �xed number k. Then, we 
an 
on
atenate the 	i to obtain a 
oloring 	 of G withSMC(G;	) � tXi=1 SMC(Gi;	i) + kpln q � pSMC(G):This allows us to improve the running time of the approximation s
heme.Theorem 4.5 There is a PTAS for pSMC using at most O(1=�3 � (log 1=�)2) preemptions pernode, running in time exp((1=� � log 1=�)3)n.Proof. Let � > 0 be given, and set �2 = �=3 and �1 = �=4. Let q = e(6=��(lg 1=�+4))2 .Apply Theorem 4.4 with the above q, partitioning G into subgraphs Gi. Color ea
h of theGi independently as follows. By Claim 2, there is a 1+ �1-approximate pSMC 
oloring 	i using2pGi(lg 1=�1 + 2) 
olors. Apply the dynami
 programming strategy of Theorem 4.3 to �nd a
oloring 	0i that satis�es the properties of Theorem 4.2 for the �2 given. Finally, 
on
atenatethe 
olorings 	0i to obtain a 
oloring 	 of G.Observe that the 
olorings 	0i satisfySMC(Gi;	0i) � (1 + �2)SMC(Gi;	i) � (1 + �1)(1 + �2)pSMC(Gi):13



Note that lg 1=�1 = lg 1=� + 2, and that 2(lg 1=� + 4)=pln q = �=3. By Theorem 4.4, the 
ost of	 is bounded bySMC(G;	) � tXi=1 SMC(Gi;	0i) + 2(lg 1=�1 + 2)pln q � pSMC(G)� ((1 + �1)(1 + �2) + �=3)pSMC(G)� (1 + �)pSMC(G):The 
omplexity and preemption requirements are dire
t fun
tions of the number of seg-ments stipulated by Theorem 4.2 for ea
h Gi. Part 2 of the statement of Theorem 4.2 
an bestrengthened to bound the number of segments byO(log1+�2 �	i=lGi) = O(log1+� q) = O(1=�3 � (log 1=�)2):This is also the upper bound on the number of preemptions per vertex. By the argument ofTheorem 4.3, the time 
omplexity is bounded by(1=�)O(log1+� q) = 2O(1=��lg 1=�)3per node.In parti
ular, for any �xed � > 0, a 1+�-approximation using O(1)-preemptions 
an be 
om-puted in linear time, and a 1 +O(log log n= log n)1=3-approximation using O(log n)-preemptions
an be 
omputed in polynomial time.4.3 Exa
t algorithm for small lengthsRe
all that the pSMC problem on trees is NP-hard, even when lengths are polynomially bounded.We observe that the problem remains solvable when the lengths are small.Claim 4 The pSMC problem on trees admits a polynomial solution when p = O(logn= log log n).Proof. Re
all that by Claim 1 the number of 
olors used by an optimum solution for pSMC isO(p � log n). Thus, ea
h vertex is to be assigned at most p 
olors in the range 1; : : : ; O(p � logn).Consequently, the number of di�erent possible preemptive assignments of 
olors to a vertex is O(p � log n)p ! = O(poly(n)): (3)whi
h is polynomially bounded sin
e p = O(log n= log log n). Hen
e, the straightforward dynami
programming algorithm 
an 
ompute an optimal solution in polynomial time by exhaustivelyevaluating all possible assignments of 
olors to v.5 ExtensionsThe exa
t algorithms that we have given apply to several generalizations of the npSMC problemon trees. We mention here a few su
h generalizations.14



The Optimum Chromati
 Cost Problem (see [J97℄) generalizes the Sum Coloring problem,in that the 
olor 
lasses 
ome equipped with a 
ost fun
tion 
 : Z+ ! Z+, and the obje
tiveis to minimize the value of Pv2V 
(f(v)). We 
an generalize this to multi
olorings, in whi
h
ase it is reasonable to assume that the 
olor 
osts are non-de
reasing. Our O(n2) and O(np)algorithms hold then here as well.The Channel Assignment problem 
omes with edge lengths ` : E ! Z+ and asks for anordinary 
oloring, where the 
olors of adja
ent verti
es are further 
onstrained to satisfy jf(v)�f(w)j � `(vw). A non-preemptive multi
oloring instan
e 
orresponds roughly to the 
ase where`(vw) = (x(v) + x(w))=2. Our algorithms handle this extension equally well, and 
an bothhandle the sum obje
tive as well as minimizing the number of 
olors. The argument for paths
an be revised to hold for this problem (and the OCCP problem), in whi
h 
ase we 
an arguean O(log p) bound on the length of a grounding sequen
e.Various di�erent measures and 
ost fun
tions 
onsidered in s
heduling theory 
an also behandled by our algorithms. The introdu
tion of release dates, the points at whi
h jobs be
omeavailable, are a

ommodated by adjusting the feasibility of a proposed 
oloring of a node. Avertex will now be grounded if exe
ution is initiated at its release time. Due dates and/ordeadlines are treated by modifying the obje
tive fun
tion, and the same holds for vertex weights.Common obje
tive fun
tions that 
an be handled in
lude weighted sum of 
ompletion times,weighted number of late jobs, total tardiness, and the maximum (or sum) of monotonous non-de
reasing fun
tions of the 
ompletion times. Additionally, pre
eden
e 
onstraints that followthe stru
ture of the tree have the e�e
t of dire
ting the edges within the tree, and are easilya

ommodated by allowing only grounding 
onsistent with those dire
tions.5.1 Open questionsOur study leaves a few open problems. Is the pSMC problem hard on paths? More generally,for whi
h non-trivial, interesting 
lasses of graphs, is the pSMC problem solvable in polynomialtime? (It is possible to prove, that the problem 
an be easily solved on stars; we omit the detailshere). Can npSMC be optimally solved on other 
lasses of graphs? Our 
urrent arguments relyon a polynomial bound on the number of paths, whi
h only holds for highly restri
ted extensionsof trees.Referen
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hni
al Report, 58:1{14, 1973.A Proof of Theorem 4.4The theorem follows from two lemmas.Lemma A.1 Let r and s be real numbers, s < r, and let f be a fun
tion de�ned on [s; r℄. Then,for some t 2 [s; r℄, tf(t) � 1ln(r=s) Z rs f(x)dx:Proof. Let t be the value x in the interval [s; r℄ that minimizes xf(x). Then,Z rs f(x)dx = Z rs xf(x) � 1xdx � tf(t) Z rs 1xdx = tf(t) ln(r=s):We use Lemma A.1 to partition the instan
e into 
ompa
t segments with good averageweight properties. For a (multi-)set X of numbers, let S(X) denote Pxi2X xi; for a graph G,let S(G) denote Pv2V (G) x(v). De�ne g(x) to be the number of xi greater than or equal to x,i.e. g(x) = jfxi : xi � xgj.Proposition A.2 Let X = fx1; : : : ; xng be a set of non-negative reals, and let q be a natu-ral number. Then, there is a polynomial time algorithm that generates a sequen
e of integralbreakpoints bi, i = 1; 2; : : :, with pq � bi+1=bi � q, su
h thatmXi=1 g(bi) � bi � 1lnpq S(X):Proof. Let b0 be the smallest xi value, and indu
tively let bi be the breakpoint obtained by theLemma A.1 on the set Xi = fxj : xj � bi�1g with s = bi�1 � pq and r = bi�1 � q. Terminate thesequen
e on
e bi ex
eeds the maximum length p.Sin
e bi � bi�1pq, we have that bi � qi=2, and the loop terminates within 2 logq p iterations.In ea
h iteration, the ratio r=s is at least pq. By Lemma A.1,bi � g(bi) � 1lnpq Z bi�1qbi�1pq g(x)dx:17



Note that bi � bi�1pq and thus the intervals [bi�1pq; bi�1q) are disjoint. Hen
e,Xi big(bi) � 1lnpq �Xi Z bi�1qbi�1pq g(x)dx � 1lnpq Z 10 g(x)dx = S(X)lnpq :The algorithm that �nds the bi partition 
an easily be implemented in linear time.To obtain a proof of Thm. 4.4, let b0; b1; : : : ; bt as generated by the algorithm of Prop. A.2and let Gi be the graph indu
ed by nodes with lengths in the range (bi�1; bi), for i = 1; 2; : : : ; t.The �rst property of the theorem of the length ratio is immediately satis�ed.The 
ost of the multi
oloring is derived from two parts: the sum of the 
osts of the subprob-lems, and the delay 
osts in
urred by the 
olorings of the subproblems (
onsidering the 
oloringof ea
h Gi as a subproblem). For ea
h Gi, the delay o

urred is re
e
ted by the number of
olors used in this subproblem, times the number of yet un
olored verti
es (namely, the numberof 
olors used times the total number of verti
es in
luded in later problems whi
h are verti
esof higher lengths). The number of 
olors used on Gi is assumed to be at most k � bi, while g(bi)represents the number of verti
es delayed. By Proposition A.2, this 
ombined 
ost is thustXi=1 k � big(bi) � tXi=1 kpln q � S(Gi) � kpln q � pSMC(G):
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