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	 : V 7! 2Z+ , suh that j	(v)j = x(v) and adjaent verties reeive non-interseting sets ofolors.The traditional optimization goal is to minimize the total number of olors assigned to G.In the setting of a job system, this is equivalent to �nding a shedule, in whih the time whenall the jobs have been ompleted is minimized. Suh an optimization goal favors the system.However, from the point of view of the jobs themselves, an important goal is to minimize theaverage ompletion time of the jobs (or equivalently, the sum of the ompletion times). Thisoptimization goal is the onern of this paper. Formally, in the sum multioloring (SMC) problem[BKH+00℄ we look for a multioloring 	 that minimizesPv2V f	(v), where f	(v) is the largestolor assigned to v by 	. This redues to the sum oloring problem [K89℄ in the ase of unitolor requirements.There are two variants of the summultioloring problem. In the preemptive (pSMC) problem,eah vertex may get any set of olors, while in the non-preemptive (npSMC) problem, the setof olors assigned to eah vertex has to be ontiguous. The preemptive version orresponds tothe sheduling approah ommonly used in modern operating systems [SG98℄, where jobs maybe interrupted during their exeution and resumed at a later time. The non-preemptive versionaptures the exeution model adopted in real-time systems, where sheduled jobs must run toompletion.In the urrent paper we study the sum multioloring problems on trees. Given the hardnessof these problems on general graphs (see below), it is natural to seek out lasses of graphs wheree�etive solutions an be obtained eÆiently. Trees onstitute the boundary of what we knowto be eÆiently solvable, and represent perhaps the most frequently naturally ourring lass ofgraphs.A natural appliation, in whih the resulting onit graph is a tree, is paket routing on atree network topology: eah node an onit over its neighboring links, either with its parentor hildren in the tree. Thus, the onit graph is indued by the network topology. Conitsamong proesses running on a single-user mahine (e.g. PCs) are typially for shared data. Inmany operating systems, the reation of a new proess is done by `splitting' an existing proess,via a `fork' system all (see, e.g., [B86℄). Thus, the set of proesses forms a tree where eahproess is a node. Conits over shared data typially our between a proess and its immediatedesendents/anestor in that tree, as these proesses will share parts of their odes. Thus, theonit graph is also a tree.1.1 Our resultsFor the npSMC problem, we give in Setion 3 two exat algorithms, with inomparable om-plexity: the �rst one is quadrati, i.e. O(n2) where jV j = n, while the seond is more e�etiveif the maximum olor requirement p is small, running in time O(np). In both ases, non-trivialoptimizations have been made to redue the time omplexity. The �rst algorithm is still moreeÆient for the speial ase of paths, running in time O(n � log p= log log p). (Unless spei�edotherwise, all the logarithms in this paper are to the base of 2.)2



For the ase of pSMC, we present in Setion 4 a polynomial time approximation sheme(PTAS), along with an exat algorithm for a limited speial ase. A partitioning result of[HK02℄ allows us to improve the time-approximation tradeo�s of this method. Spei�ally, wegive a PTAS for pSMC using at most 1=�3 � (log 1=�)2 preemptions per vertex, running in timeexp((1=� � log 1=�)3)n. This implies that we an obtain 1+O((log logn= log n)1=3)-approximationin polynomial time, and for any �xed �, we an ahieve a (1 + �)-approximation in linear timewith a onstant number of preemptions in the oloring of eah vertex.Finally, we disuss in Setion 5 several generalizations of the problem, to whih our algorithmsontinue to apply, and mention open problems for further study.1.2 Related workThe sum multioloring problem was introdued by Bar-Noy et al. [BKH+00℄. They presenteda omprehensive study of the approximability of both the pSMC and the npSMC problems, ongeneral and speial lasses of graphs.The sum oloring problem was introdued by Kubika [K89℄, who gave a polynomial algo-rithm for trees. Jansen [J97℄ extended the dynami programming strategy to partial k-trees.These dynami programming algorithms an be seen to generalize to multioloring, leading toalgorithms that are polynomial in n and p, e.g. O(p2n log n). However, the additions in thispaper are needed to obtain an algorithm polynomial in n only, or to redue the omplexity toO(pn).Known hardness results for the sum oloring problem arry over to the sum multioloringproblem. It is NP-hard on interval graphs [S99℄, planar graphs [HK02℄, and line graphs [BBH+98℄,and NP-hard to approximate within some onstant  � 1 on bipartite graphs [BK98℄. On gen-eral graphs, it is hard to approximate within fator n1��, for any � > 0 unless NP = ZPP[FK96, BBH+98℄.Marx [M02℄ has reently shown that pSMC is NP-hard on trees, answering a question posedin an earlier version of this paper [HKP+99℄. His result holds for even binary trees when theweights are polynomially bounded.Resoure-onstrained sheduling has reently been investigated in the vast literature ofsheduling algorithms (see e.g. [BK96, K96℄). A speial ase involves the sheduling of mul-tiproessor jobs on dediated proessors. Kubale [K96℄ studies the omplexity of shedulingbiproessor jobs, whih orresponds to multioloring line graphs. He also investigates speiallasses of graphs, and shows that npSMC of line graphs of trees is NP-hard in the weak sense,but leaves it open for pSMC.Halld�orsson and Kortsarz [HK02℄ have generalized some of the results of this paper tothe lass of partial k-trees (or, graphs of bounded treewidth). In partiular, they gave anO(n(p log n)k+1) algorithm for npSMC, and a (1 + �)-approximation in time nO(1=�)3 for pSMC.Notie that for both models, the algorithms of this paper have onsiderably better omplexitybounds for the ase of trees (k = 1). The [HK02℄ paper also gave PTASes for planar graphs inboth models. 3



2 De�nitions and NotationAn instane of a multioloring problem is a pair (G;x) where G = (V;E) is a graph andx : V ! Z+ is a vetor of olor requirements (or lengths) of the verties. We denote byp = maxv2V x(v) the maximum olor requirement in G.A multioloring of G is an assignment 	 : V ! 2Z+ , suh that eah vertex v is assignedx(v) distint olors and adjaent verties reeive non-interseting sets of olors. The start time(�nish time) of a vertex v under 	 is the smallest (largest) olor assigned to v, denoted bys	(v) = minfiji 2 	(v)g (f	(v) = maxfiji 2 	(v)g). A multioloring 	 is ontiguous, ornon-preemptive, if for any v, f	(v) = s	(v) + (x(v) � 1). The sum of a multioloring 	 of aninstane (G;x) is the sum of the �nish times of the verties Pv2V f	(v). The minimum sum ofa preemptive (non-preemptive) multioloring of G is denoted by pSMC(G) (npSMC(G)).We denote by n the number of verties of the input instane. For a vertex v, d(v) is thedegree and N(v) is the set of neighbors of v. When T is a rooted tree, we denote by Tv thesubtree rooted at v, h(v) denotes the set of hildren of v, and p(v) its parent. Finally, we denoteby [x; y℄ the interval of natural numbers fx; x+ 1; : : : ; yg.We use the following bound on the number of olors used. Let us view oloring as a sequentialproess where in eah step i an independent set is seleted and the respetive verties assignedthe olor i. This an be viewed as a timeline, with the olor requirements of the verties beingsatis�ed inrementally.Lemma 2.1 Consider an optimal sum multioloring (preemptive or non-preemptive) of a bipar-tite graph, and let n0 be the number of verties that are not fully olored at some point. Then,at least n0=2 of these verties are fully olored after additional 2p steps.Proof. We fous on the delay osts of the remaining n0 verties, i.e. the number of time stepsbefore their ompletion during whih they are not being olored. A oloring of these n0 vertiesthat ompletes less than half of them in 2p steps inurs a delay of more than pn0=2.Consider the following alternative oloring. If V1; V2 is a bipartition of the graph with jV1j >jV2j, olor V1 �rst to ompletion, followed by V2. The delay inurred is at most pjV2j � pn0=2.Lemma 2.1 implies the following laim, sine at most one vertex remains after 2p log n steps.Claim 1 Optimum sum multiolorings (preemptive or non-preemptive) of a bipartite graph useat most O(p � logn) olors.A bound on the number of olors in an approximate solution was given in [HK02℄. We stateits preemptive version for bipartite graphs.Claim 2 Any bipartite graph G has a (1 + �)-approximate preemptive sum multioloring thatuses at most 2p(lg 1=�+ 2) olors.Proof. Observe that a round-robin shedule of G, that olors the bipartitions alternately inodd and even time steps, ompletes eah job within twie its length. Thus, pSMC(G) � 2S(G),where S(G) = Pv2V x(v). It follows that in an optimal sum oloring, at most S(G)=p vertiesremain to be ompleted by step 2p. By repeated appliations of Lemma 2.1, at most S(G) � �=p4



remain after 2p lg 1=� additional steps. If we now trunate the optimal oloring there, and 2-olor the remaining verties using 2p olors, the added ost of oloring these verties is at mostp � S(G) � �=p � pSMC(G) � �. The total number of olors used will be p(4 + 2 lg 1=�).3 Non-preemptive multioloringWe say that vertex v is grounded in a multioloring 	, if the smallest of v's olors is 1, i.e. s	(v) =1, and v is anked in 	 by a neighbor u, if the smallest olor of v is one larger than the largestolor of u, i.e. s	(v) = 1 + f	(u). We all a sequene of verties v0; v1; : : : ; vm a groundingsequene of vm, if v0 is grounded and, for all 0 � i < m, vi+1 is anked by vi. Then, vm is saidto be grounded in v0. The following observation is alled for.Observation 3.1 (Flanking property) In an optimum npSMC oloring of a graph, eahvertex v is either grounded or has a anking neighbor.It is not diÆult to see that this holds for any minimal oloring, where the oloring of any onevertex annot be redued without reating an improper oloring. It follows from the Flankingproperty that a grounding sequene v0; v1; : : : ; vm of a vertex vm ompletely determines theoloring of vm. In fat, s	(vm) equals the sum of olor requirements of v0; : : : ; vm�1 plus 1.In our searh for an optimum npSMC oloring on trees, we examine possible groundingsequenes. We note that sine eah pair of verties an be onneted by a single path, thetotal number of paths is �n2�; thus, the number of grounding sequenes is n2. This is theproperty of trees that is not shared by important larger lasses of graphs. It easily leads to apolynomial algorithm for trees. We shall introdue additional ideas to redue the omplexity toO(nmin(n; p)).Our general approah is based on dynami programming. We arbitrarily root the tree, andgive indutive de�nitions of some attributes of the verties and their orresponding subtrees interms of the attributes of their hildren. These attributes an be evaluated in any bottom-uporder, e.g. within a DFS or postorder traversal of the tree. Essentially, we ompute for eahnode v and for eah plausible oloring of v, the ost of the optimal solution of the subtree rootedat v, assuming this partiular oloring of v. The plausible olorings of v orrespond, in the �rstalgorithm, to the n possible groundings of v, and in the seond algorithm, to all ways in whihthe neighbors of v an delay v.We speify the oloring of verties in terms of �nishing times. The �nishing times f(u) andf(v) of adjaent verties u and v must satisfy[f(u)� x(u) + 1; f(u)℄ \ [f(v)� x(v) + 1; f(v)℄ = ; ;for the oloring to be valid, in whih ase we say they are ompatible.Remark: We observe that the optimum non-preemptive sum multioloring an be omputedin time independent of p. This may be important within an applied ontext, for small values ofn. Namely, for eah vertex v, there are at most d(v) + 1 anking hoies for v: either ankingone of its neighbors, or being grounding. Thus, the number of minimal multiolorings is at most5
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zFigure 1: The three possible ases for grounding of w and p(w).nn. Eah an be generated and heked in linear time, hene the omplexity is O(nn+1). Thisbound is essentially tight, sine the number of minimal shedules in a lique on n verties isn! = 
(n=e)n.3.1 An O(n2) algorithm for npSMC of treesAssume that the tree T is arbitrarily rooted in vertex r. We give a dynami programmingalgorithm that omputes bottom-up a matrix A, where A[u; v℄ ontains the minimum ost of aoloring of the subtree Tu, under the onstraint that u is grounded in v. The desired solution isthen given by minv A[r; v℄. Let fv(u) denote the �nishing time of u when grounded in v. Namely,fv(u) is the sum of the lengths of the verties on the unique path from v to u.Adjaent verties must satisfy the following onstraints on their groundings. Let w be anon-root vertex with parent u = p(w). There are only three possibilities for grounding of w andp(w):(i) w and p(w) both grounded in v 2 Tw. Then p(w) is anked by w.(ii) w and p(w) both grounded in v 62 Tw. Then w is anked by p(w).(iii) w grounded in z 2 Tw and p(w) grounded in v 62 Tw. Then fv(p(w)) and fz(w) must beompatible �nishing times.Figure 3.1 illustrates the three ases.The minimum ost of the subtree Tu when u is grounded in v, A[u; v℄, is given by the�nishing time of u when grounded in v, plus the minimum osts of grounding all subtrees of uin a ompatible manner. We thus get the formulaA[u; v℄ = fv(u) + Xw2h(u)8<: A[w; v℄ v 2 Twminz2Tw[fvg(A[w; z℄ : fv(u); fz(w) ompatible) v 62 Tw. (1)Sine the optimizations in the right-hand side of the formula for A[u; v℄ involve only vertiesin the subtree of u, this gives us a rule for omputing the matrix A bottom-up, thus solving theproblem. Note that when u = p(w) is grounded in a vertex v 2 Tw, w must also be grounded in6



v. This is the easy ase (i). When u = p(w) is grounded in a vertex v 62 Tw, we have either thesimilarly easy ase (ii) where w is also grounded in v, or else the harder ase (iii) where we needto optimize over all groundings of w among those z 2 Tw that are ompatible with groundingp(w) in v. Beause of this harder ase (iii), we only have an O(n) bound on the omputation ofeah of the n2 entries of A giving an O(n3) algorithm overall. In the remainder of this setionwe show how to ompute the entries in onstant amortized time with some preproessing, givingan O(n2) algorithm overall.In omputing ase (iii), we need to �nd ompatible �nishing times. To do this quikly, wepreompute, for eah vertex in the tree, a sorted list of the �nishing times orresponding to then di�erent ways of grounding this vertex. The following lemma shows how to do this eÆiently.De�ned the length of a path to be the sum of the lengths of the verties on the path.Lemma 3.2 Given a rooted tree T and a length funtion x : V (T )! Z+, one an ompute inO(n2) time a sorted list, for eah vertex u 2 V , of the lengths of the paths in T originating in u.Proof. The algorithm has a bottom-up phase followed by a top-down phase. In the bottom-upphase, we ompute for eah vertex u the sorted list Lu of all lengths of paths from u to vertiesin the subtree Tu. Eah entry has the index of the originating vertex as a satellite data. For aleaf u, Lu ontains only x(u). For a non-leaf vertex u, Lu is obtained by merging the hildren'slists, then adding x(u) to eah entry and prepending the entry x(u) to the resulting list.In the top-down phase, eah non-root vertex u of T proesses the ompleted sorted list ofits parent p(u). The entries involving desendants of u will appear in the same order in that listas in Lu (with values that have been augmented by x(p(u))), and an thus be identi�ed whilesanning the two lists. We extrat the entries of non-desendants of u, augment their values byx(u), and merge the resulting list with Lu. This gives the omplete list for u. The work doneat eah vertex in eah phase is O(n), for a total time omplexity of O(n2).For u = p(w) grounded in vertex v 62 Tw we now show how to deal with ase (iii), i.e. howto ompute eÆiently minz2Tw(A[w; z℄ : fv(u); fz(w) ompatible). Let zi, i = 1; : : : ; t, be theverties of Tw ordered suh that fz1(w) � : : : � fzt(w).First, we extrat the list A[w; z1℄; : : : ; A[w; zt℄. Next, we ompute two vetors P and S,orresponding to pre�x and suÆx minimas of A[w; z1℄; : : : ; A[w; zt℄. Namely,P [w; i℄ = min1�j�ifA[w; zj ℄g; S[w; i℄ = mini�j�tfA[w; zj ℄g:Consider the sorted list fv1(u) � : : : � fvn(u) of all �nishing times for the parent u ofw. Observe that eah fvi(u) is inompatible only with fzj (w), where j lies in some intervalj = li+1; : : : ; ri� 1. Conversely, fvi(u) is ompatible with preisely fz1(w); : : : fzli (w) and withfzri (w); : : : ; fzt(w). The minimum osts of these ranges are given by P [w; li℄ and S[w; ri℄. Thus,given P and S, we an for u grounded in vi 62 Tw easily ompute minz2TwfA[w; z℄jfvi (u); fz(w) ompatibleg =min(P [w; li℄; S[w; ri℄) in onstant time per element. It remains to show how to ompute the ve-tors l and r.Observe that both the start and endpoints of these inompatibility intervals are monotonenondereasing sequenes. Thus, we an ompute li and ri, for all i; 1 � i � n, by a single santhrough the two lists of �nishing times for w and p(w). Namely,7



fzt+1(w) 1.l0  0; r0  1for i 1 to n doli  li�1; ri  ri�1while (fvi(p(w)); fzli+1(w) ompatible and ri > li + 1)li  li + 1while (fvi(p(w)); fzri (w) are inompatible, or fzri (u) < fvi(p(w)))ri  ri + 1Observe that the proessing time for omputing the vetors P; S; l and r is O(n) for eahvertex. We an therefore ompute A[u; v℄ for all pairs u; v bottom-up over u in O(n2) time. Thevalue of the overall optimum ost, npSMC of T , is given by minv2T (A[r; v℄). We have obtainedthe following theorem.Theorem 3.3 The npSMC problem an be solved for a tree in O(n2) time.3.1.1 Speial asesIn the ase of paths, we an improve the omplexity by observing that grounding sequenesmust be short.Lemma 3.4 The maximum number d of verties in a grounding sequene v1; : : : ; vd in a pathis O(log p= log log p).Proof. Suppose the verties v0; v1; : : : ; vd (d > 2) form a grounding sequene in an optimumnpSMC oloring 	� of a path. Then, we laim thatx(vi) � (d� i) X0�j<ix(vj); for 2 � i < d. (2)It then follows that x(vd�1) � (d� 2)! X1�j<2x(vj) � (d� 2)!Sine p � x(vd�1) = d
(d), we have the desired bound.To show inequality (2), onsider the oloring obtained from 	� by grounding the sequenevi; : : : ; vd�1 in vi. This may neessitate anking vi�1 by vi. The former dereases the ost (withrespet to SMC(G;	)) byP0�j<i x(vj), for eah vertex vi+1; : : : ; vd�1, while the latter inreasesthe ost by at most x(vi). Thus, the ost di�erene is x(vi)� (d� i)P0�j<i x(vj), whih by theassumed optimality of 	� must be nonnegative.Corollary 3.5 The npSMC problem an be solved for a path in O(n log p= log log p) time.A redution in the omplexity of the tree algorithm an also be obtained when the tree hasfew distint path lengths. We state the following laim without a proof. It implies, e.g., that thenpSMC of a tree of onstant height with onstant number of di�erent lengths an be omputedin linear time.Claim 3 Suppose a tree T has the property that from any vertex v, there are at most q di�erentlengths of paths originating from v. Then, npSMC of T an be omputed in time O(qn).8



3.2 An O(n � p) algorithm for npSMC on treesWe now give an algorithm whose running time is linear in n when p � 1 is a onstant.The algorithm Tree-olor proeeds bottom-up on the rooted tree T . The oloring of eahvertex v involves two tasks:(a) Evaluate the ost of the possible �nish times of v and selet the optimal one, from whihto derive the orresponding minimum multiolor sum of Tv.(b) For v 6= r, prepare a set of at most x(v) + x(p(v)) � 1 < 2p alternative �nish times for v,in the event that p(v) hooses a �nish time that interferes with v.Observe that the �nish time of v in a minimal oloring is at mostB(v) = x(v) + Xu2N(v)(x(u) + x(v)� 1) = (d(v) + 1)x(v) + Xu2N(v)(x(u)� 1):Namely, eah neighbor u of v an delay the ompletion of v by at most x(u) steps, from its ownlength, plus x(v) � 1, from leaving a \gap" in the set of available olors for v.The data required for these omputations will be kept in the following integer arrays:� ostv[B(v)℄, in whih the ith entry gives the minimum ost of oloring Tv, when the �nishtime of v is set to be i.� altv[B(v)℄, of alternative �nish times for v, in whih the jth entry is the optimal �nish timefor v when p(v) has �nish time j.Let f(v) be the �nish time of v that minimizes the ost of oloring Tv, and minCost(v) =ostv[f(v)℄ be that ost.Eah vertex v �lls the arrays in four phases.(i) In the initial phase, v �lls the array ostv with values appropriate for the ase that noollisions our with the optimal olors of its hildren. LetSubtreeCost(v) Xu2h(v)minCost(u):Then, for i = x(v); : : : ; B(v), setostv[i℄ SubtreeCost(v) + i:(ii) In the seond phase, v adjusts the ost array to reet ollisions with the optimum ol-orings of the subtrees rooted at its hildren. Spei�ally, for any �nish time i of v thatis inompatible with f(u), for u 2 h(v), v updates the ith entry of ostv, using the ithentry of the array altu.Namely, for eah u 2 h(v) and i = f(u)� x(u) + 1; : : : ; f(u) + x(v)� 1,ostv[i℄ ostv[i℄ + ostu[altu[i℄℄�minCost(u):The optimal �nish time, f(v), is the value i that minimizes ostv[i℄.9



(iii) In this phase, two help vetors P and S are omputed from ostv. The pre�x index-minima of i, P [i℄, is the index in whih ostv is minimal, in the range [x(v); i℄. That is,for i = x(v); : : : ; B(v), P [i℄ = arg minx(v)�p�i ostv[p℄:Thus, e.g., ostv[P [i℄℄ � ostv[p℄, for x(v) � p � i.Similarly, the suÆx index-minima of i, S[i℄ = argmini�s�B(v) ostv[s℄, is the index in therange [i; B(v)℄ in whih ostv is minimal.(iv) Finally, alternative �nish times are omputed. For eah possible �nish time j for p(v) thatis inompatible with f(v), altv[j℄ should be the index minimizing ostv. The onstraintimplies that either v is sheduled before p(v), �nishing no later than j � x(p(v)), or it issheduled after p(v), �nishing no earlier than j + x(v). The index minimizing ostv in theformer ase is then given by P [j�x(p(v))℄, while in the latter ase it is given by S[j+x(v)℄.Thus, we assign altv[j℄ the better of the two possibilities.Theorem 3.6 Tree-olor solves npSMC on trees in O(np) time.Proof. We onsider separately the phases performed by a vertex v. The �rst phase takesO(B(v)) steps. In phase (ii), for eah hild u of v, at most x(u) + x(v)� 1 entries are updatedin ostv, for a ombined omplexity O(B(v)). In phase (iii), the vetors P and S an beomputed indutively, in O(B(v)) steps eah. Initially, P [x(v)� 1℄  S[B(v)+1℄ 1, and forx(v) � i � B(v),P [i℄ ( i if ostv[i℄ � ostv[P [i� 1℄℄P [i� 1℄ otherwise, S[i℄ ( i if ostv[i℄ � ostv[S[i+ 1℄℄S[i+ 1℄ otherwise.Finally, the O(p) entries of altv are omputed in onstant time eah. Observe, thatXv B(v) �Xv (2d(v) + 1)x(v) � (4n� 3)p:Thus, summing up the omplexity over all the verties yields the theorem.4 Preemptive aseWe turn our attention in this setion to the preemptive version of the multioloring problem.Here, we do not have a polynomial algorithm for trees, nor a proof of NP-hardness. Instead,we give the next best possible: a polynomial-time approximation shema. We also mention anexat algorithm for the ase of small olor requirements.4.1 Algorithm overviewThe algorithm is a standard dynami programming algorithm, but one that attempts to �nd arestrited type of a solution. These solutions have the property that there are at most (1=�)O(log p)10



possible olorings of eah vertex. Given suh a property, a straightforward dynami programmingalgorithm will examine the verties bottom-up, trying eah possible oloring of a vertex, andstoring the ost of the subtree for eah suh hoie. The main part of the argument is to showthe existene of a restrited solution whose sum is within 1 + � of optimal.We partition the olor spetrum of an optimal oloring into layers, whose sizes are geometripowers of 1+ �. Consider the ith layer Li and the oloring of a vertex v within that layer. Notethat as long as f(v) =2 Li, we may alter the olors assigned to v within Li. This follows sinethe objetive funtion only takes into aount the �nish time f(v). Now suppose that we knowthe amount of olors that eah vertex has in layer Li. Let s(Li) and f(Li) be the minimumand maximum olors in Li. If we an \�t" all the required amounts of olors for eah vertex vwithin the interval [s(Li); f(Li)℄, this does not a�et the f(v) values, as long as f(v) =2 Li. Foreah layer i, this results in a makespan (minimizing the number of olors used) instane: �t therequired amount of olors per vertex in layer i so that the makespan is minimized. Using theminimum makespan oloring, we are guaranteed not to overstep Li.It is interesting to note that the makespan problem for bipartite graphs is trivially solvableusing a natural greedy algorithm (see next subsetion). From this disussion it follows that whengiven the quantities of olors per vertex in eah layer, we an easily approximate the multiolorsum within (1 + �). Indeed, f(v) may inrease by (1 + �) due to the hanges in the last layer ofv (the layer i suh that f(v) 2 Li). But sine in all the other layers the olors do not overstepto the next layer this is the only inrease.If, on the other hand, we exeed the number of olors of Li by a small amount, we may a�ordto push all the olors of v upwards. Indeed, we may expand eah layer Li by a fator of 1 + �,inreasing f(v) only by the same amount. We use this idea as follows. Let i(v) be the exatnumber of olors assigned to v in Li. \Guessing" the exat numbers i(v) for eah v turns out tobe too expensive. Instead, we guess those quantities up to an additive fator of � �i(v). Namely,we guess the multiple of � � (f(Li) � s(Li)) of olors that v has in eah layer i. This dereasesthe number of possible hoies down to 1=�. We may be assigning up to � � (f(Li)� s(Li)) extraolors per vertex, per level i. However, this only inreases the �nish time of eah node by 1+ �,and the �nal multioloring sum is within a fator of (1 + �)2 from optimal.4.2 Polynomial time approximation sheme for pSMC of treesWe �rst study the makespan problem on bipartite graphs. For simpliity of exposition, we allowmultiolorings where at least x(v) olors are assigned to eah vertex v; learly, this does notmake the problem any easier.Lemma 4.1 Let (G;x) be a bipartite instane, and let � > 0. Let q = maxuv2E(x(u) + x(v))and let si = b�iq, for i = 0; : : : d1=�e. Then, there is a ontiguous oloring 	0 of (G;x) usingb(1+ �)q olors, suh that for eah vertex v there are integers j; j0 suh that 	0 assigns to v theinterval [sj + 1; : : : ; sj0 ℄ of olors.Proof. Observe that q is a lower bound on the number of olors needed. Let R;B be a bipartition11



of G, and let r = b(1 + �)q. Consider the ontiguous oloring 	0 where	0(v) = ( [1; x(v)℄; when v 2 R[r � x(v) + 1; r℄; when v 2 B.Observe, that there are at least r� q = b�q values that separate the olors assigned to any pairof adjaent verties. Hene, this oloring an be extended to a oloring 	0, given by	0(v) =[j f[sj + 1; sj+1℄ : [sj + 1; sj+1℄ \	0(v) 6= ;g :Let �	 = maxv f	(v) be the makespan (maximum olor used) of a multioloring 	. Wenow show how a given multioloring an be massaged into one satisfying several properties. Theidea is to partition the range of possible olors into \layers" of geometrially inreasing sizes.We apply Lemma 4.1 to shedule the olors of all verties inside eah layer, and to provide uswith the desired restritions on the possible olorings. The ompletion times of the vertiesmay inrease for two reasons: the expansion fators of eah level, and beause of hanges in thehighest level that a vertex is olored in, but we an bound both fators by 1 + �.Theorem 4.2 Let (G;x) be a bipartite instane, and � > 0. Then, for any multioloring 	 ofG, there is multioloring 	0, suh that for eah vertex v,1. f	0(v) � (1 + �)f	(v),2. 	0(v) is the union of at most O(log1+� �	) ontiguous segments, and3. There are O(1=�) hoies for the beginning and the end of eah segment.Proof. Let �0 = p1 + �� 1. For 1 � i � blog1+� �	, let qi = d(1 + �0)ie and Li = [qi�1; qi� 1℄.De�ne the instanes (G;xi), where xi(v) = j	(v) \ Lij.Apply Lemma 4.1 to obtain olorings 	0i on (G;xi). Form 	0 by onatenation:	0(v) =[i 8<:z + i�1Xj=0b(1 + �0)qj : z 2 	0i(v)9=; :If the highest olor of 	(v) was in the layer Li, then f	(v) > qi�1, whilef	0(v) � b(1 + �0)qi � (1 + �0)2qi�1 � (1 + �)f	(v);establishing part 1 of the theorem. Parts 2 and 3 also follow from properties of the 	0i oloringsof Lemma 4.1. Spei�ally, start and end points within eah layer Li are of the form qi�1 + j �� � (qi � qi�1) where 0 � j � b1=�.Theorem 4.3 For eah � > 0, the pSMC problem on trees an be approximated within 1 + �fator in time (p � logn)O(1=��log(1=�)) � n. 12



Proof. Let 	 be an optimal pSMC solution, and reall the properties of the solution 	0 thatTheorem 4.2 has shown to exist. We now argue that we an �nd a solution with suh properties.Traverse the tree in postorder, or any other bottom-up order. For eah vertex we omputea table of size ry, where y = O(log1+� �	) is the number of segments in the oloring 	0 andr = 1=� is the number of possible starting or end points of eah segment. There is an entry foreah possible oloring of v under the onstraints on 	0 of Theorem 4.2, where we reord theminimum ost of a oloring of the subtree rooted at v, given that oloring of v. For eah suholoring, we searh through the tables of the hildren of v for the heapest olorings of theirsubtrees onsistent with that assignment to v, and reord the minimum.The amount of omputation for a given vertex v is then rO(y)d(v), for a ombined timeomplexity of rO(y)n. Sine �	 = O(p � log n) by Claim 1, and ln(1+ �) � �, the theorem follows.As presented, the time omplexity is only pseudo-polynomial. It is not hard to hange thedependeny on p to a dependeny on n. However, following the early version of this paper[HKP+99℄, a strutural result was given in [HK02℄ that leads to substantial improvements inthe time omplexity and/or approximation fators of the above approximation sheme.Let pG = maxv2G x(v), and lG = minv2G x(v). Let SMC(G;	) denote the sum of a mul-tioloring 	 on G. The following is impliit in [HK02, Prop. 1℄; for ompleteness, we give theproof in the appendix.Theorem 4.4 Let G be a multioloring instane and q = q(n) � 1 an integer. We an partitionG in polynomial time into subgraphs G1; G2; : : : ; Gt with the following two properties:1. The ratio pGi=lGi of maximum to minimum olor requirements is at most q.2. Suppose we are given olorings 	i of Gi, i = 1; : : : ; t, eah using at most k � pGi olors, forsome �xed number k. Then, we an onatenate the 	i to obtain a oloring 	 of G withSMC(G;	) � tXi=1 SMC(Gi;	i) + kpln q � pSMC(G):This allows us to improve the running time of the approximation sheme.Theorem 4.5 There is a PTAS for pSMC using at most O(1=�3 � (log 1=�)2) preemptions pernode, running in time exp((1=� � log 1=�)3)n.Proof. Let � > 0 be given, and set �2 = �=3 and �1 = �=4. Let q = e(6=��(lg 1=�+4))2 .Apply Theorem 4.4 with the above q, partitioning G into subgraphs Gi. Color eah of theGi independently as follows. By Claim 2, there is a 1+ �1-approximate pSMC oloring 	i using2pGi(lg 1=�1 + 2) olors. Apply the dynami programming strategy of Theorem 4.3 to �nd aoloring 	0i that satis�es the properties of Theorem 4.2 for the �2 given. Finally, onatenatethe olorings 	0i to obtain a oloring 	 of G.Observe that the olorings 	0i satisfySMC(Gi;	0i) � (1 + �2)SMC(Gi;	i) � (1 + �1)(1 + �2)pSMC(Gi):13



Note that lg 1=�1 = lg 1=� + 2, and that 2(lg 1=� + 4)=pln q = �=3. By Theorem 4.4, the ost of	 is bounded bySMC(G;	) � tXi=1 SMC(Gi;	0i) + 2(lg 1=�1 + 2)pln q � pSMC(G)� ((1 + �1)(1 + �2) + �=3)pSMC(G)� (1 + �)pSMC(G):The omplexity and preemption requirements are diret funtions of the number of seg-ments stipulated by Theorem 4.2 for eah Gi. Part 2 of the statement of Theorem 4.2 an bestrengthened to bound the number of segments byO(log1+�2 �	i=lGi) = O(log1+� q) = O(1=�3 � (log 1=�)2):This is also the upper bound on the number of preemptions per vertex. By the argument ofTheorem 4.3, the time omplexity is bounded by(1=�)O(log1+� q) = 2O(1=��lg 1=�)3per node.In partiular, for any �xed � > 0, a 1+�-approximation using O(1)-preemptions an be om-puted in linear time, and a 1 +O(log log n= log n)1=3-approximation using O(log n)-preemptionsan be omputed in polynomial time.4.3 Exat algorithm for small lengthsReall that the pSMC problem on trees is NP-hard, even when lengths are polynomially bounded.We observe that the problem remains solvable when the lengths are small.Claim 4 The pSMC problem on trees admits a polynomial solution when p = O(logn= log log n).Proof. Reall that by Claim 1 the number of olors used by an optimum solution for pSMC isO(p � log n). Thus, eah vertex is to be assigned at most p olors in the range 1; : : : ; O(p � logn).Consequently, the number of di�erent possible preemptive assignments of olors to a vertex is O(p � log n)p ! = O(poly(n)): (3)whih is polynomially bounded sine p = O(log n= log log n). Hene, the straightforward dynamiprogramming algorithm an ompute an optimal solution in polynomial time by exhaustivelyevaluating all possible assignments of olors to v.5 ExtensionsThe exat algorithms that we have given apply to several generalizations of the npSMC problemon trees. We mention here a few suh generalizations.14



The Optimum Chromati Cost Problem (see [J97℄) generalizes the Sum Coloring problem,in that the olor lasses ome equipped with a ost funtion  : Z+ ! Z+, and the objetiveis to minimize the value of Pv2V (f(v)). We an generalize this to multiolorings, in whihase it is reasonable to assume that the olor osts are non-dereasing. Our O(n2) and O(np)algorithms hold then here as well.The Channel Assignment problem omes with edge lengths ` : E ! Z+ and asks for anordinary oloring, where the olors of adjaent verties are further onstrained to satisfy jf(v)�f(w)j � `(vw). A non-preemptive multioloring instane orresponds roughly to the ase where`(vw) = (x(v) + x(w))=2. Our algorithms handle this extension equally well, and an bothhandle the sum objetive as well as minimizing the number of olors. The argument for pathsan be revised to hold for this problem (and the OCCP problem), in whih ase we an arguean O(log p) bound on the length of a grounding sequene.Various di�erent measures and ost funtions onsidered in sheduling theory an also behandled by our algorithms. The introdution of release dates, the points at whih jobs beomeavailable, are aommodated by adjusting the feasibility of a proposed oloring of a node. Avertex will now be grounded if exeution is initiated at its release time. Due dates and/ordeadlines are treated by modifying the objetive funtion, and the same holds for vertex weights.Common objetive funtions that an be handled inlude weighted sum of ompletion times,weighted number of late jobs, total tardiness, and the maximum (or sum) of monotonous non-dereasing funtions of the ompletion times. Additionally, preedene onstraints that followthe struture of the tree have the e�et of direting the edges within the tree, and are easilyaommodated by allowing only grounding onsistent with those diretions.5.1 Open questionsOur study leaves a few open problems. Is the pSMC problem hard on paths? More generally,for whih non-trivial, interesting lasses of graphs, is the pSMC problem solvable in polynomialtime? (It is possible to prove, that the problem an be easily solved on stars; we omit the detailshere). Can npSMC be optimally solved on other lasses of graphs? Our urrent arguments relyon a polynomial bound on the number of paths, whih only holds for highly restrited extensionsof trees.Referenes[B86℄ M. Bah. The Design of the UNIX Operating System Prentie Hall, 1986.[B92℄ M. Bell. Future diretions in traÆ signal ontrol. Transportation Researh PartA, 26:303{313, 1992.[BBH+98℄ A. Bar-Noy, M. Bellare, M. M. Halld�orsson, H. Shahnai, and T. Tamir. On hro-mati sums and distributed resoure alloation. Information and Computation,140:183{202, 1998. 15
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[SG98℄ A. Silbershatz and P. Galvin. Operating System Conepts. Addison-Wesley, 5thEdition, 1998.[SP88℄ E. Styer and G. Peterson. Improved Algorithms for Distributed Resoure Alloa-tion. Proeedings of the Seventh Annual ACM Symposium on Priniples of Dis-tributed Computing (PODC), pp. 105{116, 1988.[Y73℄ W. R. Young. Advaned Mobile Phone Servie, Introdution, Bakgroundand Objetives. Bell Systems Tehnial Report, 58:1{14, 1973.A Proof of Theorem 4.4The theorem follows from two lemmas.Lemma A.1 Let r and s be real numbers, s < r, and let f be a funtion de�ned on [s; r℄. Then,for some t 2 [s; r℄, tf(t) � 1ln(r=s) Z rs f(x)dx:Proof. Let t be the value x in the interval [s; r℄ that minimizes xf(x). Then,Z rs f(x)dx = Z rs xf(x) � 1xdx � tf(t) Z rs 1xdx = tf(t) ln(r=s):We use Lemma A.1 to partition the instane into ompat segments with good averageweight properties. For a (multi-)set X of numbers, let S(X) denote Pxi2X xi; for a graph G,let S(G) denote Pv2V (G) x(v). De�ne g(x) to be the number of xi greater than or equal to x,i.e. g(x) = jfxi : xi � xgj.Proposition A.2 Let X = fx1; : : : ; xng be a set of non-negative reals, and let q be a natu-ral number. Then, there is a polynomial time algorithm that generates a sequene of integralbreakpoints bi, i = 1; 2; : : :, with pq � bi+1=bi � q, suh thatmXi=1 g(bi) � bi � 1lnpq S(X):Proof. Let b0 be the smallest xi value, and indutively let bi be the breakpoint obtained by theLemma A.1 on the set Xi = fxj : xj � bi�1g with s = bi�1 � pq and r = bi�1 � q. Terminate thesequene one bi exeeds the maximum length p.Sine bi � bi�1pq, we have that bi � qi=2, and the loop terminates within 2 logq p iterations.In eah iteration, the ratio r=s is at least pq. By Lemma A.1,bi � g(bi) � 1lnpq Z bi�1qbi�1pq g(x)dx:17



Note that bi � bi�1pq and thus the intervals [bi�1pq; bi�1q) are disjoint. Hene,Xi big(bi) � 1lnpq �Xi Z bi�1qbi�1pq g(x)dx � 1lnpq Z 10 g(x)dx = S(X)lnpq :The algorithm that �nds the bi partition an easily be implemented in linear time.To obtain a proof of Thm. 4.4, let b0; b1; : : : ; bt as generated by the algorithm of Prop. A.2and let Gi be the graph indued by nodes with lengths in the range (bi�1; bi), for i = 1; 2; : : : ; t.The �rst property of the theorem of the length ratio is immediately satis�ed.The ost of the multioloring is derived from two parts: the sum of the osts of the subprob-lems, and the delay osts inurred by the olorings of the subproblems (onsidering the oloringof eah Gi as a subproblem). For eah Gi, the delay ourred is reeted by the number ofolors used in this subproblem, times the number of yet unolored verties (namely, the numberof olors used times the total number of verties inluded in later problems whih are vertiesof higher lengths). The number of olors used on Gi is assumed to be at most k � bi, while g(bi)represents the number of verties delayed. By Proposition A.2, this ombined ost is thustXi=1 k � big(bi) � tXi=1 kpln q � S(Gi) � kpln q � pSMC(G):
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