COMPUTATIONALLY EFFICIENT SIMULATION-DRIVEN DESIGN TECHNIQUES FOR MICROWAVE ENGINEERING

SLAWOMIR KOZIEL, ASSOCIATE PROF. | STANISLAV OGURTSOV, POSTDOC
SCHOOL OF SCIENCE AND ENGINEERING | RU LECTURE MARATHON
Challenges of Simulation-Driven Microwave Design

Contemporary microwave engineering relies more and more on CPU-intensive electromagnetic simulations.

Accurate evaluation of typical components can be very time consuming: from several minutes to many hours per simulation.

Typical microwave components: filters, SICs, LTCC, and antennas.
Challenges of Simulation-Driven Microwave Design

Traditional design methods that employ EM solver in an optimization loop are impractical due to:

- High computational cost of EM simulation
- Poor analytical properties of EM-based objective functions
- Lack of sensitivity information or sensitivity expensive to compute

Traditional approach: EM solver directly employed in the optimization loop:

=> High CPU cost
=> Fails to find satisfactory design
Surrogate-Based Microwave Design

Computationally efficient simulation-driven design can be realized using physically-based surrogate models

Key components:
- High-fidelity (fine) model: CPU-intensive EM-simulated microwave structure
- Low-fidelity (coarse) model: low-cost but physically-based representation (e.g., equivalent circuit)

Coarse model is very fast but usually lacks accuracy; To serve as a surrogate, it has to be corrected
Surrogate-Based Microwave Design

Surrogate-based design replaces direct optimization of the fine model by iterative re-optimization and updating of the surrogate:

Traditional approach

Surrogate-Based
Surrogate-Based Microwave Design: Space Mapping

Probably the most successful surrogate-based design technique in microwave engineering is space mapping (SM)

Coarse model correction methods used by SM:

(a) Domain distortion (input SM)

(b) Response distortion (output SM)

(c) Exploiting physically-based degrees of freedom (implicit SM)

(d) Exploiting free parameters (frequency SM)

Example of combined SM surrogate model:
Example: Design of Microstrip Hairpin Filter

Fine model: Simulation time 17 hours per design!

Coarse model: Equivalent circuit – simulation time less than 0.1 s
Example: Design of Microstrip Hairpin Filter

Traditional design methods fail for this example

Space Mapping: Optimal design obtained after 5 EM simulations!

![Graphs showing initial responses and design specifications](image1)

Initial responses and design specifications

![Graphs showing responses of the optimized filter](image2)

Responses of the optimized filter
Simulation-Based Tuning

Design process can be performed in an even more efficient way using the concept of tuning.

Simulation-based tuning is an invasive technique, where the structure under consideration is “cut” and the circuit-based tuning components are inserted.

The resulting surrogate (“tuning” model) is very fast and yet accurate as it contains the “image” of the fine model at the initial design.
Example: Chebyshev Filter

Chebyshev filter geometry

Fine model with places for inserting the tuning ports
Example: Chebyshev Filter

The coarse (dashed line) and fine model (solid line) response at the initial design:

Fine model response after one (!) iteration of the tuning-based optimization algorithm:
Engineering Optimization & Modeling Center (EOMC)

EOMC develops surrogate-based techniques for computationally expensive real-world engineering design problems

Applications: microwave/RF engineering, aerospace design, aeroacoustics, hydrodynamics, oil industry

Website: http://www.ru.is/kennarar/koziel/eoml_index.html