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Abstract

An algorithm that derives a linear program for an ordinary differential equation
is presented, of which a feasible solution defines a continuous piecewise affine
linear Lyapunov function for the differential equation. The linear program can
be generated for an arbitrary region containing an equilibrium of the differential
equation. The domain of the Lyapunov function is the region used in the gen-
eration of the linear program. The Lyapunov function secures the asymptotic
stability of the equilibrium and gives a lower bound on its region of attraction.



1. Introduction

The Lyapunov theory of dynamical systems delivers some powerful tools for the
stability analysis of dynamical systems. For several stability concepts, the stabil-
ity of an equilibrium of a system, can be shown to be equivalent to the existence
of a real valued energy-like function with some additional properties. An energy-
like function that can be used to prove the stability of an equilibrium of a system
is called a Lyapunov function for the system. In this paper we will derive a
linear program for continuous autonomous dynamical systems with an equilib-
rium at zero, whose dynamics are governed by an ordinary differential equation
x(t) = f(x(t)). The function f : R* — R" is not assumed to have some specific
algebraic structure like linear or piecewise affine linear. The linear program is
constructed by the use of function values of f on a grid and bounds on the sec-
ond order derivatives of its components in a compact subset containing the grid.
A feasible solution of the linear program, i.e. a solution that does not violate
the constraints of the linear program, defines a continuous piecewise affine linear
Lyapunov function for the system. The domain of the Lyapunov function is the
convex hull of the grid used to generate the linear program.

In the literature there have been several approaches to construct Lyapunov
functions for nonlinear systems. In (Johansson 1999) and (Johansson and Rantzer
1997, 1998) piecewise quadratic Lyapunov functions are constructed for piecewise
affine linear systems. The construction is based on continuity matrices for the
partition of the space. Computing them is not a closed problem. In (Brayton
and Tong 1979, 1980), (Michel, Sarabudla, and Miller 1982), and (Michel, Nam,
and Vittal 1984) the Lyapunov function construction for a set of linear systems
is reduced to the design of a balanced polytope fulfilling some invariance proper-
ties. In (Boyd, El Ghaoui, Feron, and Balakrishnan 1994) a convex optimization
problem is used to compute a quadratic Lyapunov function for a system linear
in a band containing the origin, in (Johansson 1999) there is an illustrating ex-
ample of its use. In (Ohta, Imanishi, Gong, and Haneda 1993) the stability of
an uncertain nonlinear system is analyzed through a set of piecewise affine linear
systems. In (Kiendl and Ruger 1995) piecewise affine linear Lyapunov function
candidates are used to prove the stability of linear systems with piecewise affine
linear control. In (Karweina 1989), (Kiendl 1999), (Knicker 1999), and (Knicker
and Krause 1999) a convex partition is used to prove Gy y-stability of time dis-
crete piecewise affine linear systems. There is no Lyapunov function involved,
but the region of attraction can be calculated. In (Scheel and Kiendl 1995) and
(Scheel 1997) a converse Lyapunov theorem is used to construct integral Lya-
punov functions for time discrete systems. None of the methods above can be
used for general continuous nonlinear systems.

In (Julian, Guivant, and Desages 1999) and (Julian 1999) linear programming
is used to calculate Lyapunov-like functions for continuous autonomous nonlinear
systems. When such a function can be found the system trajectories are proven to



be ultimately bounded, but the equilibrium is not necessarily stable. The linear
program presented here was to a large extent inspired by the work of Julian et
al. and we will compare the linear programs in detail in the next section, where
we explain how both methods work. The main advantage of the linear program
introduced in this paper over the approach of Julian et al., is that a feasible
solution of it defines a true Lyapunov function for the system, which implies
asymptotic stability of the equilibrium at zero.

2. How the method works

Julian et al. proposed a linear program, that can prove the solutions of a contin-
uous autonomous system to be ultimately bounded. An exact definition of the
stability concept they used is:

The solution ¢ of a dynamical system

is said to be wuniformly ultimately bounded, with the ultimate bound
b > 0, if and only if there exists a positive constant C, such that

limsup [|¢(t, §)|| < b

t—+4o00
for all initial values & with [|&|| < C.
Their method works in essence in the following way:

i) Partition the area around the equilibrium under consideration in a family
G of simplices.

ii) Limit the search for a Lyapunov-like function V' *¥* to the class of continuous
functions, whose restriction to any S® € & is affine linear.

The essential inequality needed for V' *¥¢ to be a Lyapunov function of the system
x(t) = f(x(t)) is
—(llp(t, €)I) > D [V (o(t, €))], (1)

where D;" is a Dini derivative with respect to ¢,

DFVE((1,€))] = limsup * o (B F 1 8)) = VI ({2 £))

)
h—0+ h

¢ is the solution of the system, ~ is a strictly monotone increasing continuous
function with y(0) =0, and || - || is an arbitrary norm on R™.



Because V¥ is assumed to be affine linear on any simplex S € &, there is
for any such simplex a vector w and a real number a;, such that

VLya (X) — W(,‘) X _|_ a;
for all x € S®. Further, is it possible to show that if
—y([x[l) = w? - £(x) (2)

for all x € S® and for all S® € &, then the inequality (1) it fulfilled. Because
it is impossible to handle inequality (2) for all x numerically, one must limit this
check to a finite number of x. By limiting oneself to the vertices of the simplices
in G, one gets by irrelevant assumptions about ~:

If f is a continuous piecewise affine linear function, defined through
its values on the vertices, then inequality (1) holds for all x, if it holds
for all vertices of all simplices in &.

This makes the following straight forward. Let f;, be the continuous piecewise
affine linear function, defined through f,(x) = f(x) for all vertices x of the
simplices in &G and f}, is affine linear on any simplex in &. Solve, in consideration
of the continuity of V%¥¢ the linear constraints

=y(lIxl) = w - £,(x) (3)

with respect to w(® for all vertices x of the simplex S®, and do this for all
simplices S® in &. Note that

w® . f(x) = wh - £ (x) + wl - [f(x) — fi(x)]
< WO £, (x) + [[wO L [£(x) = £ (3) [0

for all x. Define W = maxgug ||[Ww?|; and & := sup, [[f(x) — f,(x)]|o and
consider, that for any ¢ such that x € S, we have

—y(Ix]]) + We > w - i (x) + We > w? - f(x).
By choosing a constant n €10, 1] and write the last inequality as
—(1 = n)r(lIxI) =y (lIxl) + We > w - £(x),

we see that
—(1=my(Ixl)) = w - £(x)
if
—ny(([x]) + We <0,



1.e.

We
x| =7
x| N p )-
This means that the system is ultimately bounded with the ultimate bound
_ ., We
b= a; ' (aa(y 1(7)));

where the «; and «y are strictly increasing continuous functions R — R, such
that a1(0) = a»(0) = 0 and

on([lx[]) < VE*(x) < an(|lx])).

Consequently, the function V*¥¢ defined through the vectors w* and V*¥¢(0) =
0, is almost a Lyapunov function. The only difference to a true Lyapunov function
is, that

(Il = D vEe(e( )|

for all relevant x, which additionally satisty ||x|| > ~~ (—5)7 instead of for all
relevant x. Note that the ultimate bound is not a priori known

What we do in this paper, is first for every S® in & to find a set {D1 ,
of real numbers, so that if

()7"7 n+1}

n+1 n+1
X_ZAXJ, €01, Y N=1,
j=1

where the vectors x;, Xy, .., X, 1 are the vertices of the simplex S(i), then

n+1

I£(x) — £o(x) oo < > A DY
7=1

Then we solve the linear constraints
|w§i)| < C;i) for j=1,2,..,n

and

—(IIx;11) > w? - £(x;) + DS CF for j=1,2,.,n+1,

where Xi,Xs,..,Xn41 are the vertices of the simplex S® in &, with respect to
C’fi), Céi),..,Cr(f), and w@, for all simplexes S0 € &. This will, as shown in the
Appendix, deliver a true Lyapunov function and thus secures asymptotic stability.

Note that when x; = 0, we must have D](-Z) = 0, for else there would be

no feasible solution to the linear constraints. This is a difficulty that must be



solved, if the method is to be of any use. The solution lies in a proper choice of
the simplicial partition combined with an appropriate bound on ||f(x) — £ (x)|| .
proved in the Appendix for f with bounded second order derivatives in the interior
of every simplex S® in &.

3. Parameterization of the Lyapunov function

To be able to search for a Lyapunov function V¢ : R* — R with linear
programing one clearly needs to limit the search to some parameterized set of
functions. The set of the continuous piecewise affine linear functions R” — R,
with a predefined boundary configuration, is probably the most simple of such
sets. It further has the nice property, that with a suitable choice of the bound-
ary configuration, one can approximate any continuous function with arbitrary
precision.

In order to explain the boundary configuration used in the generation of the
linear program we need some definitions. The boundary configuration is basically
the same as the of Julian et al., but the notations differ a lot. In the rest of this
paper e; is the i-th unit vector, &, is the set of the permutations of {1,2,..,n},
|z] is the largest integer smaller than or equal to z, d;; is the Kronecker delta,
and y,, is the characteristic function of the set A.

Definition 1: The set Gn- n+ C Z" is defined as
gN—’N+ = {(21,22, ..,Zn) € Zn‘ N{ <z < Ni—}_, 1=1,2, ..,n},

where the N; , N, ,.., N are strictly negative integers and the N, N, ,.., N.f

n n
are strictly positive integers. The set Gli_ g+ 1s defined through

glﬂ_’m = {(x1,29, .., ) € ]R"‘ N7 <z; <N, i=1,2,.,n}.

To generate the linear program we want to use a closer meshed grid than
On- n+- To achieve this we define a piecewise scaling function for Qlfr, N+

Definition 2: The piecewise scaling function PS : Gfi v — R" is defined
through

n —1 [zi] -1
PS(x) := Z - Z hix + Z i + hi o) (@i = |2]) | €
1=1 k=N; k=N

for allx € Qf(;_ N+ for some strictly positive real constants h;y, fori=1,2,..,n,
and k= N; ,N; +1,.,N;* — 1.



By choosing the constants h;; in the last definition properly, the image of
O~ n+ under PSis a grid as closely meshed as one wishes. We are going to use the
function values of f on the grid PS(Gn- n+), i.e. the image of Gn- N+ under the
function PS, as constants in the linear program. Further, we are going to use the
linear program to calculate the values of the Lyapunov function V%¢ on the same
grid. What we need to construct a properly defined continuous piecewise affine
linear function from these values, is an appropriate boundary configuration. The
atoms of the partition used, leading to an advantageous boundary configuration,
are the simplices S,, where ¢ is a permutation.

Definition 3: The simplex S,, where o € &,,, is defined as the set
Sy:={x € ]R"‘ 0 < Zo(1) < Toz) < .. < Ty < 1},
where T, is the o(i)-th component of the vector x.

An equivalent definition of the set S, is

n+1 n n+1

Sy:={x € ]R"‘ X = Z)‘ize”(ﬁ’ Z)\k =1},
=1 j=i k=1

i.e. the set S, is a simplex in R”. We need one more definition before we can
use the values of V% on the grid PS(Gn- n+) to define a continuous piecewise
affine linear function PS(GL- y) — R.

Definition 4: The functions RN : R — R*, where N' C {1,2,..,n}, are
defined through

RN (x) == [(—1)v Wy, (=1 W@y (—1)v ™z ] for all x € R,

The next theorem is proved in Chapter 4 in (Marinosson 2002). The proof is
rather long and will not be given here.

Theorem 5: For every z € Gn- n+ let V[z] be a real number. Then a continuous
piecewise affine linear function Vv - PS(GIIQ;,’NJr) — R is properly defined
through:

i) VI (PS(z)) := Vz] for all z € n- N+

i) The restriction of V¥ on any set of the form PS(RN (y + S,)) contained
in PS(GL- n+), where N C {1,2,.,n}, 0 € &,, and 'y € 7%, is affine
linear. -



4. The linear program

From the last section we have everything we need to state the linear program.

Linear Program 6: Let the sets Gn- n+ C Z" and Qlf;_’NJr C R” be as in
Definition 1, and let the functions PS : G&_ v — R* and RN :R* — R" be
as in Definition 2 and Definition 4. We define the sets Y, Z, and X',

i) For every N C {1,2,..,n} we define the set YN C On- N+ through

0,1,., N}t —1, ifi¢ N

N7 +1,N7 +2,..,0, ifie N )

YN = {(ylay27 7yn) € Zn‘ Yi = {

ii) We define the set Z through
Z ={{x,y} C Gn-~+| X =y = (0i1, 02, .., 6in) for some i € {1,2,..,n}}.
The set Z s the set of neighboring pairs in GN- N+.

iii) Let || - || be an arbitrary norm on R*. The set X'l is defined through

X = {|[PS(2)] | 7 € Gn-n+}-

Let U C R™ be an open set containing the set PS(GL i) and £ : U — R”
be a function with the property, that the second order partial derivatives 0,04 f;,
1,1,k =1,2,..,n exist and are bounded on every open set MJ}YN of the form

M = PS(yY + RV (0,17))

for every N' C {1,2,..,n} and every y¥ € YVN. Further assume that £(0) = 0.
We define the constants Fi[z], i = 1,2, ...,n and z € Gn- n+, and B [y"] for
all k1 =1,2,..,n, al N C {1,2,..,n}, and all yV € YV, through

Filz] := f;(PS(z))

and
B{}C/[yN] > max sup |0x0,fi(x)].
i=1,2,..,n XGMNN
y

Further, we define the variables V[z] for all z € Gn- N+, the variables C[{x,y}]
for all {x,y} € Z, and the variables V[z] and T'[z] for all x € XM,
To shorten writings we define for every N C {1,2,..,n}, every o € &,,, and

every i = 1,2,..,n+ 1, the vectors xé\/’a through

n

j=i



Further, we define for every N C {1,2,..,n}, every o € &, every yV e vV,
N
every k=1,2,..,n, and every 1 =1,2,..,n+ 1, the real value Aﬁ{i’ff’y through

NoyV N,o
ARV = e - [PS(yY +x07) = PS(yV)]|.
The constraints of the linear program are:

LC1) Let € > 0 be an arbitrary number and let xq,%s,..,xx be the elements of
XU 5n an increasing order. Then

Ulzy| =T[z] =0,

ET9 S \Ij[ﬂfg],
ET9 S F[l‘Q],
and for every i =2,3,. K — 1:

Uz — W[z, ] _ V]zi] — Y]z,

<
Ti —Tir Tyl T O
and
Plai] = Plzia] _ Tlaia] — Ul
Ti— Ti1 T T —m
LC2)
V[0l =0

and for every z € Gn- N+ -
Y[[[PS(z)[] < VIz].
LC3) For every {x,y} € Z:
—Cl{x ¥} IPS()=PS(y)llo < V[x|-VIy] < C[{x, ¥} PS()—PS(¥)llc-

LCY) For every N C {1,2,..,n}, every o € &,, every y¥ € YV, and i =
1,2, . n+1:

~T[IPS(y" +x")l) >

n N N,o N N,o
D (=1l "+ 71~ Vv + ) Fogily +x7]
o IPS(yV +x;7) = PS(yV + x:57 ) [loo
1 - N,oyN / aN,oyV N,oyV - N,o N,o
+ 5 Z Bi\s[[yN]Ar,z’ Y (As,i’ Y + As,l’ Y )ZC[{yN + Xj ’ ’yN + Xj—}-’l ]
r,s=1 j=1



Note that the value of the constant ¢ in LC1 is not important. If there is a
solution for one €4, > 0, then there is a solution for all ¢ > 0. Just multiply
all variables with ¢/e,,. This comes as no surprise for if V% is a Lyapunov
function for a system, then so is aV*¥ for any a > 0. The next theorem contains
the essential results of this paper. A proof of it is given in the Appendix.

Theorem 7: Assume that the linear program above has a feasible solution. Then
the function V2 : PS(GL_ i) — R, defined as in Theorem 5, with the real
numbers Vz|, z € Gn- N+, ’from a feasible solution of the Linear Program 6, is
a (true) Lyapunov function for the system x(t) = £(x(t)).

If there is a feasible solution of the Linear Program 6 then one can use the
Lyapunov function from Theorem 7 to extract information about the stability
behavior of the equilibrium at zero in a very easy way. It is asymptotically stable
and a lower bound on its region of attraction is given by the largest preimage
{x € R*|V¥(x) < c} entirely contained in the interior of PS(GL_ )

In the next section we will see an example of the use of Linear Program 6 to
generate a Lyapunov functions for a nonlinear system. A linear solver generally
minimizes an objective, i.e. a function linear in the variables of the linear program,
in consideration of the linear constraints. In order to simply generate a Lyapunov
function by the Linear Program 6 the objective is not needed. This makes it
possible to use the objective to optimize the Lyapunov function in some way. In
the example given the objective

Y. (V2] = VIPS(2)llu])

z2€0N— N+

is minimized. This should not be considered to deliver the optimal Lyapunov
function, but it leads to a reasonably looking one. In the example the constant &
was set equal to one and the norm used was the maximum norm ||-|| := ||||oc. The
linear solver CPLEX® ! 6.5 was used to solve the linear program. In order to be
able to visualize the Lyapunov function properly we consider a two-dimensional
system.

5. Example

Consider the dynamical system x(t) = f(x(t)), where

f(x) := <—sin(i?) - x?) '

!CPLEX is a registered trademark of ILOG®

10



Figure 1: Lyapunov function for x(t) = f(x(t))

It is the state equation of a pendulum with friction, where

g := acceleration due to gravity,
[ := the length of the pendulum,
k := the coefficient of friction,

m := the mass of the pendulum.

For a further discussion on this system see, for example, Subsection 1.1.1 and
Example 1.3 in (Khalil 1992). One easily verifies that f has an equilibrium at zero
and that the second order derivatives of its components are bounded. The Linear
Program 6 was used to generate linear constraints for a continuous piecewise
affine linear Lyapunov function [—1.71,1.71]> — R for the system, which the
linear solver was able to satisfy. In figure 1 a Lyapunov function for a 91 x 91
grid (= 8281 grid points) is drawn. The grid steps are identical for the x;- and
zo-axes, 0.001 in the interval [-0.01, 0.01], 0.01 in the intervals [—0.21, —0.01] and
[0.01,0.21], and 0.1 in the intervals [—1.71, —0.21] and [0.21, 1.71]. The boundary
configuration is shown at the base of the figure and the shaded area is a lower
bound on the region of attraction of the equilibrium at zero.

11



6. Conclusions

In this work we derived an algorithm that generates linear programs for ordinary
differential equations. A feasible solution of the linear program for a particu-
lar system defines a continuous piecewise affine linear Lyapunov function for it.
An examples of its use was shown, where a Lyapunov function for a nonlinear
system was generated. The procedure presented here can be seen as a major
improvement of the procedure presented in (Julian, Guivant, and Desages 1999)
and (Julian 1999), where a solution of a similar linear program results in an al-
most Lyapunov function. The advantage of a true Lyapunov function over the
Lyapunov-like function of Julian et al., is that it secures asymptotic stability of
the equilibrium instead of the weaker ”the trajectories of the system are ulti-
mately bounded”. A very interesting open problem related to the results of this
work is the following. Sometimes there is a feasible solution to a linear program
generated for an asymptotically stable system and sometimes not. Just using a
more closely meshed grid does not always seem to help if there is no solution. The
function PS has more degrees of freedom because of the variable grid steps sizes
allowed, but using them is currently a trial-and-error process. What is needed is a
converse theorem for the existence of continuous piecewise affine linear Lyapunov
functions. Preferably such a theorem should be based on some easily checked
properties of the dynamical system in question and should at least give an idea
of how to construct the grid. If this problem can be solved in a satisfactory way
one would have a general method to generate Lyapunov functions for a very large
class of continuous dynamical systems.

Appendix

In this appendix we are going to prove Theorem 7. To keep it at a reasonable
length not all details can be thoroughly worked out. In (Marinosson 2002) they
are, so it can be taken as a general reference for the proof. What we are going
to show, is that if the functions ¢, v, and V% are defined as piecewise affine
linear interpolation of the values of the variables ¥, I', and V respectively from
a feasible solution of the Linear Program 6, then ¢ and ~ are strictly monotone
increasing continuous functions with ¢ (0) = v(0) = 0,

Y(lIxl) < Ve (x) (4)
for all x € PS(G{- n+), and

Df [V ((t,€))] < —v(llo(t,€)1]), (5)

for all ¢(,€) in the interior of PS(G{_ +), where ¢(-, &) is the solution of the
equation x(t) = f(x(t)) with the initial value & Because V™%(0) = 0 this

12



implies that V%% is a Lyapunov function of the system. The property (5) is
usually formulated with the classical derivative, but it is well known that the
Dini derivative can be used just as well.

Let 21, &9, .., tx be the elements of X!l in an increasing order. We define the
piecewise affine linear functions ¢,y : [z1, +00] — R through

Uz, — Ulx;
| Y] — Yo
Tit1 — T4

P(y) == Y]]

(Z/ - xz)

and

Uiy — Dzi]
Tit1 — &4

Y(y) = Llay] + (y — i),

for all y € [z, 2;41] and all i = 1,2, .., K — 1. The values of ¢ and 7 on |z, +00[
do not really matter, but to have everything properly defined, we set

o el = P

Y(y) = V[rg 1 Y—Tk-1)

and
F[:EK] — F[fol]

Tk —TK-1

Y(y) == Tzg 1] + (y —xx-1)

for all y > . From this definition, it is clear that the functions ¢ and ~ are
continuous. The function V1% is defined as in Theorem 5 with the constants
Vlz], z € Gn- N+, from the Linear Program 6. We will now prove that the linear
constraints LC1, LC2, LC3, and LC4 imply the properties (4) and (5).

The Constraints LC1:

It is easy to see that the constraints LC1 imply, that the functions ¢ and v are
convex strictly monotone increasing functions and that ¢ (0) = (0) = 0. Usually,
it is not demanded that these comparison functions are convex, but we will need
that later in the proof.

The Constraints LC2:

We are going to show that the constraints LC2 imply the inequality (4). To do
this let x € PS(QI{‘;_’NJF). Then there is an N C {1,2,..,n}, a 0 € &, and an
yV € YV, such that

n+1 n+1
X = Z)\iPS(yN%—XzN’”), A €[0,1) for j=1,2,..,n+1 and Z)‘i =1.

i=1 i=1

By using the constraints LC2, the convexity of ¢, the affine linearity of V¥¢ on
the simplex defined through the vertices PS(yV4x7"?), PS(yV +x3"%),..,PS(y" +

13



xﬁfjﬂ), that yV + Xf\f’a € On+n- foralli =1,2,..,n+1, and that ¢ is monotone
increasing, we get

n+1

Yl < D A(IPSEY + )
i=1
n+1
= Y NEPSY + <))
i=1
n+1
Z AVIYY + %]
i=1
n+1
= > v PEsyN +x)

=1

IN

n+1
= Vi APS(yY + %))
=1

= Vivr(x).
Because x was arbitrary, this inequality is valid for all x € PS(QII\“},’N+).

The Constraints LC3:
The constrains LC3 imply that
Vix] = Vly]
IPS(x) — PS(¥)loc

< Cl{x,y}]

for every {x,y} € Z. This can be used to give a bound on the gradient of V/*¥
in LC4. To see this verify that for every N' C {1,2,..,n}, every yV e YV, and
every o € &, the function V¥ has the algebraic form

. VIyY +x7 = viyV +x)]

Vi (z) = [2—PS(y")]- > (~1)xw @) e, +Vy

N,o )
P IPS(yY +x57) = PS(y" +x557) [l
on the simplex PS(y" + RV (S,)). The gradient wh oy of Vive on PS(yN +
RN(S,)) is therefore

n N,O' N,(T
NooyV — —1 )X () Viy" + x; "] - VyY + X1 ] .
w - Z( 1) v N N.,o N N,o €s(5)s (6)
s IPS(yV +x;7) = PS(yV + %377 )l
from which .
ayN N,o T
Il < 3 CHyY 477 3 o xi] (7)

=1

14



immediately follows.

The Constraints LC4:
We are going to prove that the constraints LC4 imply, that

—1([l#(t, &) > D[V ((t,€))]

for all ¢(t, &) in the interior of PS(QI{‘;,’NJF). To do this let ¢(t, &) be arbitrary and
set x := ¢(t,€). Then there is an N’ C {1,2,..,n},a 0 € &,, and an yV € YV,
such that

n+1 n+1
X = Z)\iPS(yN—i-X?/’G), Aj€0,1] for j=1,2,..,n+1 and Z)‘i =1,

i=1 i=1
and such that
x + hf(x) € PS(y"V + RN(S,))

for all h > 0 small enough. With w defined as the gradient of V*#* on PS(y* +
RN (S,)), it is not difficult to show that

W B(x) = D [V (0, )]]
In the same way as in the considerations about L.C2, we get

—y(IIxl)) > = Y ATPS Y + %),

i=1
so if we can show that

= ATIIPS(Y + x| = w - £(x)

i=1
we have proved the theorem. Because of

w-f(x)=w- i )\if(PS(yN + Xé\[’a))

=1

n+1
+w- (f(x) - Z MEPS(yV + xﬁ“’)))
k=1
n+1
<Y aw - E(PS(yY +x)
i=1
n+1
+ [WllilIf(x) = > MEPSY +3")) oo
k=1

15



the formula (6) for w, the definition of the constants Fj[z], and the inequality
(7), the proof is further reduced to showing that

n+1

||f(><)—ZA E(PS(yY +2)) e

r,s=1

To proof this last inequality it is convenient to define

y .= PS(y")
and
Z; = PS(yN + x?f’”) — PS(yN)

fori =1,2,..,n+1. By Taylor’s theorem there are vectors r, ry,..,r,, .1 in PS(yN—i—
RN (S,)), such that for all i = 1,2, ..,n we have

n+1 n+1
fily + Z Mez) = > Nefily + 71)
= k=1
n+1 n+1 n+1 an
= fily) + V/fily Z AkZk + 5 Z e, - Z Anzi)[€s - Z )\zZz —(r)
r,s=1
n+1 82f
- )\ 7 v 7 T s J
kz_; k <f (y) +Vfily) - ze + 5 g:l[e - zi)[e Zz]a 3365( k))
1.e.
n+1 n+1 n+1
I£60) =Y - M (v + 24 )loo = 4:H{23f’n|fi(3’+2)\kzk > Adiy + 2]
k=1 k=1 k=1
1 n n+1 N n+1
N1 N N,o, N,oyN NU NU
n—|—1 N
< = Z Ak (Z BN {AN A ANy Af,;“’y ]D ,
r,s=1

where we used the easy to see

n+1

NoyN NoyN
Z)\ZASJ < ANV

We have proved Theorem 7.
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